cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A138817 Concatenation of final digit of n-th Mersenne prime A000668(n), final digit of n-th even superperfect number A061652(n) and final digit of n-th perfect number A000396(n).

Original entry on oeis.org

326, 748, 166, 748, 166, 166, 748, 748, 166, 166, 748, 748, 166, 748, 748, 748, 166, 166, 166, 748, 166, 166, 166, 166, 166, 166, 166, 748, 748, 166, 748, 748, 166, 748, 166, 166, 166, 166, 166
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008

Keywords

Comments

Also, concatenation of final digit of n-th Mersenne prime A000668(n), final digit of n-th superperfect number A019279(n) and final digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of n-th term of A080172, A138125(n) and A094540(n).
a(1)=326. For n>1 a(n) is equal to 166 or 748, only.

Crossrefs

A138842 Concatenation of initial and final digits of n-th even superperfect number A061652(n).

Original entry on oeis.org

22, 44, 16, 64, 46, 66, 24, 14, 16, 36, 84, 84, 36, 24, 54, 74, 26, 16, 96, 14, 26, 16, 16, 26, 26, 26, 46, 24, 24, 26, 34, 84, 66, 24, 46, 36, 66, 26, 46, 64, 14, 64, 16, 66, 14, 86, 16
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of initial and final digits of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Also, concatenation of A138124(n) and A138125(n).

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 14 2020

A138819 Concatenation of final digit of n-th even superperfect number A061652(n), final digit of n-th Mersenne prime A000668(n) and final digit of n-th perfect number A000396(n).

Original entry on oeis.org

236, 478, 616, 478, 616, 616, 478, 478, 616, 616, 478, 478, 616, 478, 478, 478, 616, 616, 616, 478, 616, 616, 616, 616, 616, 616, 616, 478, 478, 616, 478, 478, 616, 478, 616, 616, 616, 616, 616
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Also, concatenation of final digit of n-th superperfect number A019279(n), final digit of n-th Mersenne prime A000668(n) and final digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of A138125(n), A080172(n) and A094540(n).
For n>1 a(n) is equal to 478 or 616, only.
Note that, for n>1: if the final digit of n-th Mersenne prime A000668(n) is 1 then the final digit of n-th even superperfect number is 6 and the final digit of n-th perfect number also is 6, otherwise the final digit of n-th even superperfect number is 4 and the final digit of n-th perfect number is 8 (see example).

Examples

			===================================================================
.................. SHORT TABLE OF FINAL DIGITS ...................
===================================================================
... Final digit of even ..... Final digit of ..... Final digit of
... superperfect number ..... Mersenne prime ..... perfect number
........ A061652 ............... A000668 ............. A000396
===================================================================
n = 1 ..... (2) ................... (3) .................. (6)
n > 1 ..... (4) ................... (7) .................. (8)
n > 1 ..... (6) ................... (1) .................. (6)
		

Crossrefs

A138124 Initial digit of n-th even superperfect number A061652(n).

Original entry on oeis.org

2, 4, 1, 6, 4, 6, 2, 1, 1, 3, 8, 8, 3, 2, 5, 7, 2, 1, 9, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 2, 3, 8, 6, 2, 4, 3, 6, 2, 4
Offset: 1

Views

Author

Omar E. Pol and Robert G. Wilson v, Apr 01 2008

Keywords

Comments

Also, initial digit of n-th superperfect number A019279(n), if there are no odd superperfect numbers.

Examples

			a(5)=4 because the 5th even superperfect number A061652(5) is 4096 and the initial digit of 4096 is 4.
		

Crossrefs

Programs

  • Mathematica
    lst = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917}; f[n_] := Block[{pn = 2^(n - 1)}, Quotient[pn, 10^Floor[Log[10, pn]]]]; f@# & /@ (* Robert G. Wilson v, Apr 01 2008 *)

Extensions

a(13)-a(39) from Robert G. Wilson v, Apr 01 2008

A138838 Concatenation of initial and final digits of n-th even superperfect number A061652(n), divided by 2.

Original entry on oeis.org

11, 22, 8, 32, 23, 33, 12, 7, 8, 18, 42, 42, 18, 12, 27, 37, 13, 8, 48, 7, 13, 8, 8, 13, 13, 13, 23, 12, 12, 13, 17, 42, 33, 12, 23, 18, 33, 13, 23, 32, 7, 32, 8, 33, 7, 43, 8
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of initial and final digits of n-th superperfect number A019279(n), divided by 2, if there are no odd superperfect numbers.
Also, concatenation of A138124(n) and A138125(n), divided by 2.

Examples

			a(5)=23 because the 5th even superperfect number A061652(5) is 4096 and the concatenation of initial and final digits of 4096 is 46 and 46/2 = 23.
		

Crossrefs

Formula

a(n) = A138842(n)/2. - Jinyuan Wang, Mar 14 2020

Extensions

More terms from Jinyuan Wang, Mar 14 2020
Showing 1-5 of 5 results.