cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138271 Triangle T, read by rows, where column k of T = column 0 of T^(k+1) for k>0, with column 0 of T = column 0 of T^4 shift right.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 28, 10, 3, 1, 268, 78, 18, 4, 1, 3164, 798, 156, 28, 5, 1, 43672, 9874, 1714, 268, 40, 6, 1, 682632, 141282, 22368, 3164, 420, 54, 7, 1, 11834536, 2273730, 333910, 43672, 5320, 618, 70, 8, 1, 224283416, 40400466, 5566728, 682632, 77720
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2008

Keywords

Examples

			Triangle T begins:
1;
1, 1;
4, 2, 1;
28, 10, 3, 1;
268, 78, 18, 4, 1;
3164, 798, 156, 28, 5, 1;
43672, 9874, 1714, 268, 40, 6, 1;
682632, 141282, 22368, 3164, 420, 54, 7, 1;
11834536, 2273730, 333910, 43672, 5320, 618, 70, 8, 1;
224283416, 40400466, 5566728, 682632, 77720, 8378, 868, 88, 9, 1; ...
where column k of T = column 0 of T^(k+1)
with column 0 of T = column 0 of T^4 shift right:
column 1 of T = column 0 of T^2;
column 2 of T = column 0 of T^3;
column 3 of T = column 0 of T^4.
Matrix square of T, T^2, begins:
1;
2, 1;
10, 4, 1;
78, 26, 6, 1;
798, 232, 48, 8, 1;
9874, 2578, 486, 76, 10, 1;
141282, 33764, 5888, 864, 110, 12, 1;
2273730, 503910, 82210, 11396, 1390, 150, 14, 1; ...
where column k of T^2 = column 1 of T^(k+1):
column 0 of T^2 = column 1 of T;
column 2 of T^2 = column 1 of T^3;
column 3 of T^2 = column 1 of T^4.
Matrix cube of T, T^3, begins:
1;
3, 1;
18, 6, 1;
156, 48, 9, 1;
1714, 486, 90, 12, 1;
22368, 5888, 1050, 144, 15, 1;
333910, 82210, 14046, 1908, 210, 18, 1;
5566728, 1289928, 211182, 28072, 3120, 288, 21, 1; ...
where column k of T^3 = column 2 of T^(k+1):
column 0 of T^3 = column 2 of T;
column 1 of T^3 = column 2 of T^2;
column 3 of T^3 = column 2 of T^4.
Matrix 4th power of T, T^4, begins:
1;
4, 1;
28, 8, 1;
268, 76, 12, 1;
3164, 864, 144, 16, 1;
43672, 11396, 1908, 232, 20, 1;
682632, 170000, 28072, 3520, 340, 24, 1;
11834536, 2814832, 454848, 57408, 5820, 468, 28, 1; ...
where column k of T^4 = column 3 of T^(k+1):
column 0 of T^4 = column 3 of T = column 0 of T shift left;
column 1 of T^4 = column 3 of T^2;
column 2 of T^4 = column 3 of T^3.
		

Crossrefs

Cf. columns: A138272, A138273, A138274; central terms: A138275; variants: A091351, A094587, A135902.

Programs

  • PARI
    {T(n, k) = if(k>n||k<0, 0, if(k==n, 1, if(k==0, T(n+2, 3), sum(j=0, n-k, T(n-k, j)*T(j+k-1, k-1))); ); )}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Column k of T = column 0 of T^(k+1): */
    {T(n, k) = local(M=if(n==0,Mat(1),matrix(n,n,r,c,if(r>=c,T(r-1,c-1))))); if(k==n, 1, if(k==0, (M^4)[n, 1],(M^(k+1))[n-k+1, 1]))}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

Column k of T^(j+1) = column j of T^(k+1) for j>=0, k>=0.