cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138289 Row sums of A138060.

Original entry on oeis.org

1, 3, 6, 10, 11, 14, 20, 30, 41, 55, 75, 105, 146, 201, 276, 381, 527, 728, 1004, 1385, 1912, 2640, 3644, 5029, 6941, 9581, 13225, 18254, 25195, 34776, 48001, 66255, 91450, 126226, 174227, 240482, 331932, 458158, 632385, 872867, 1204799, 1662957, 2295342, 3168209, 4373008, 6035965, 8331307, 11499516
Offset: 1

Views

Author

Roger L. Bagula, May 02 2008

Keywords

Programs

  • Maple
    A138060 := proc() option remember; if n = 1 then return [1] ; else  L := procname(n-1) ; a := [] ; for i from 1 to nops(L) do if op(i,L) = 1 then a := [op(a),1,2] ; elif op(i,L) <=3 then a := [op(a),op(i,L)+1] ; else a := [op(a),1] ; end if; end do: end if; a ;end proc:
    A138289 := proc(n) add(k,k=A138060(n)) ; end proc: # R. J. Mathar, Jul 08 2011
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1}, {1, 3, 6, 10}, 35] (* Jean-François Alcover, Jul 01 2023 *)

Formula

Conjecture: a(n) = a(n-1) + a(n-4) with g.f. x*(-1 - 2*x - 3*x^2 - 4*x^3) / (-1 + x + x^4). - R. J. Mathar, Jul 08 2011
From Charlie Neder, Jun 22 2018: (Start)
The conjectured recurrence is true. Proof:
Denote by W(n) the word formed from the n-th row of A138060 and by M^k() the morphism sending W(n) to W(n+1) applied k times. We have W(5) = W(4) + W(1), so for any k >= 0, W(k+5) = M^k(W(5)) = M^k(W(4) + W(1)) = M^k(W(4)) + M^k(W(1)) = W(k+4) + W(k+1).
Setting n=k+5 completes the proof. (End)