A138291 Number of primes of the form prime(n)+g, where g is a primitive root of prime(n).
1, 1, 1, 0, 3, 1, 3, 1, 2, 4, 2, 2, 4, 3, 2, 7, 10, 3, 3, 3, 4, 6, 10, 7, 6, 11, 7, 12, 7, 9, 6, 10, 14, 10, 17, 10, 10, 12, 11, 13, 22, 7, 9, 11, 16, 10, 5, 13, 23, 8, 23, 12, 9, 23, 26, 22, 25, 13, 12, 14, 13, 19, 12, 18, 14, 32, 17, 18, 30, 22, 32, 21, 20, 14, 17, 28, 30, 19, 19, 21
Offset: 1
Keywords
Examples
a(5)=3 because the primitive roots of 11 are 2, 6, 7 and 8. Adding these numbers to 11 produce three primes: 13, 17 and 19.
Links
- T. D. Noe, Table of n, a(n) for n=1..2000
- Eric Weisstein, MathWorld: Primitive Root
Programs
-
Mathematica
Join[{1}, Table[p=Prime[n]; g=Select[Range[2,p-1], MultiplicativeOrder[ #,p]==p-1&]; Length[Select[p+g, PrimeQ]], {n,2,2000}]] Table[Count[p+PrimitiveRootList[p],?PrimeQ],{p,Prime[Range[80]]}] (* _Harvey P. Dale, Aug 03 2021 *)
Comments