A138316 Numerators of the squarefree totient analogs of the harmonic numbers F_n.
1, 2, 5, 5, 11, 13, 41, 41, 41, 11, 113, 113, 77, 241, 497, 497, 1009, 1009, 3067, 3067, 3127, 3199, 35549, 35549, 35549, 36209, 36209, 36209, 255443, 262373, 264221, 264221, 266993, 135229, 17048, 17048, 22859, 69347, 139849, 139849, 70271, 35713
Offset: 1
Examples
Numerators of F_n, e.g., F_1 = (1/1), F_2 = (1/1 + 1/1), ... F_11 = (1/1 + 1/1 + 1/2 + 0 + 1/4 + 1/2 + 1/6 + 0 + 0 + 1/4 + 1/10).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Dick Boland, An Analog of the Harmonic Numbers Over the Squarefree Integers
Programs
-
Mathematica
Table[Numerator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]], {n, 1, 60}]
-
PARI
a(n) = numerator(sum(k=1, n, if (issquarefree(k), 1/eulerphi(k)))); \\ Michel Marcus, Aug 28 2018
Formula
a(n) = numerator[sum(k=1 to n)mu^2(k)/phi(k)] where mu(k) is the Mobius function and phi(k) is Euler's Totient function.
Comments