A138343 Count of post-period decimal digits up to which the rounded n-th convergent to Pi agrees with the exact value.
0, 2, 3, 6, 8, 9, 8, 10, 10, 11, 11, 13, 15, 15, 16, 15, 17, 17, 18, 19, 20, 23, 24, 23, 26, 27, 29, 30, 29, 31, 33, 34, 37, 39, 39, 40, 42, 43, 44, 45, 45, 47, 46, 49, 49, 51, 52, 52, 54, 55, 56, 55, 56, 57, 59, 58, 59, 60, 61, 61, 63, 64, 64, 65, 65, 66, 67, 67, 68, 69, 70, 71, 72, 72
Offset: 0
Examples
For n=3, the 3rd convergent is 355/113 = 3.141592920353.., with a sequence of rounded representations 3, 3.1, 3.14, 3.142, 3.1416, 3.141593, 3.1415929, 3.14159292 etc. Rounded to 1, 2, 3, 4, 5 or 6 post-period decimal digits, this is the same as the rounded version of the exact Pi, but disagrees if both are rounded to 7 decimal digits, where 3.1415927 <> 3.1415929. So a(3) = 6 (digits), the maximum rounding level of agreement.
Extensions
Definition and values replaced as defined via continued fractions by R. J. Mathar, Oct 01 2009
Comments