A138415 Binomial transform of A000957.
0, 1, 2, 4, 10, 31, 110, 421, 1686, 6961, 29392, 126292, 550360, 2426503, 10803802, 48507844, 219377950, 998436793, 4569488372, 21016589074, 97090411020, 450314942683, 2096122733212, 9788916220519, 45850711498860, 215348942668681, 1013979873542690, 4785437476592806
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
Table[Sum[Binomial[n, k]*(2^k * (2*k-1)!! * Hypergeometric2F1Regularized[2, 2*k+1, k+2, -1] - 3*(-1)^k/2^(k+1)), {k, 1, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 30 2017 *) RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[3]==4,a[n]==(3(5n-6)a[n-1]-(29n-57) a[n-2]+3(7n-18)a[n-3]-5(n-3)a[n-4])/(2n)},a,{n,30}] (* Harvey P. Dale, Nov 22 2022 *)
Formula
From Vaclav Kotesovec, Oct 30 2017: (Start)
Recurrence: 2*n*a(n) = 3*(5*n - 6)*a(n-1) - (29*n - 57)*a(n-2) + 3*(7*n - 18)*a(n-3) - 5*(n-3)*a(n-4).
a(n) ~ 5^(n + 3/2) / (72 * sqrt(Pi) * n^(3/2)). (End)