cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138415 Binomial transform of A000957.

Original entry on oeis.org

0, 1, 2, 4, 10, 31, 110, 421, 1686, 6961, 29392, 126292, 550360, 2426503, 10803802, 48507844, 219377950, 998436793, 4569488372, 21016589074, 97090411020, 450314942683, 2096122733212, 9788916220519, 45850711498860, 215348942668681, 1013979873542690, 4785437476592806
Offset: 0

Views

Author

N. J. A. Sloane, May 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*(2^k * (2*k-1)!! * Hypergeometric2F1Regularized[2, 2*k+1, k+2, -1] - 3*(-1)^k/2^(k+1)), {k, 1, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 30 2017 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[3]==4,a[n]==(3(5n-6)a[n-1]-(29n-57) a[n-2]+3(7n-18)a[n-3]-5(n-3)a[n-4])/(2n)},a,{n,30}] (* Harvey P. Dale, Nov 22 2022 *)

Formula

From Vaclav Kotesovec, Oct 30 2017: (Start)
Recurrence: 2*n*a(n) = 3*(5*n - 6)*a(n-1) - (29*n - 57)*a(n-2) + 3*(7*n - 18)*a(n-3) - 5*(n-3)*a(n-4).
a(n) ~ 5^(n + 3/2) / (72 * sqrt(Pi) * n^(3/2)). (End)