A138546 Moment sequence of tr(A^5) in USp(6).
1, 0, 4, 0, 42, 0, 660, 0, 12810, 0, 281736, 0, 6727644, 0, 170316432, 0, 4504487130, 0, 123255492360, 0, 3465702008340, 0, 99645553785960, 0, 2918768920720380, 0, 86852063374902000, 0, 2619552500788984200, 0, 79939673971478231760, 0
Offset: 0
Keywords
Examples
a(4) = 42 because E[(tr(A^5))^4] = 42 for a random matrix A in USp(6).
Links
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Crossrefs
Cf. A138540.
Formula
mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/5}(z)-B_{(2j-m+2)/5}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z) with I_v(z) the hyperbolic Bessel function (of the first kind) of order v.
Comments