cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138557 Expansion of eta(q)^2 * eta(q^4)^2 * eta(q^10)^7 / (eta(q^2)^3 * eta(q^5)^2 * eta(q^20)^2) in powers of q.

Original entry on oeis.org

1, -2, 2, -4, 5, -4, 6, -8, 7, -10, 12, -8, 12, -12, 10, -16, 16, -14, 20, -20, 12, -24, 22, -16, 25, -24, 20, -24, 30, -20, 32, -32, 24, -32, 30, -28, 36, -40, 24, -40, 42, -24, 42, -48, 35, -44, 46, -32, 43, -50, 32, -48, 52, -40, 60, -48, 40, -60, 60, -40
Offset: 1

Views

Author

Michael Somos, Mar 24 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 + 2*q^3 - 4*q^4 + 5*q^5 - 4*q^6 + 6*q^7 - 8*q^8 + 7*q^9 + ...
		

Crossrefs

Cf. A129303, 138558.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, n/# KroneckerSymbol[ 20, #] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^5]^5 / QPochhammer[ -q] - q^2 QPochhammer[ q^10]^5 / QPochhammer[ q^2], {q, 0, n}]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q] QPochhammer[ q, -q]^3 QPochhammer[ -q^5] ^3 QPochhammer[ q^5, -q^5], {q, 0, n}]; (* Michael Somos, Sep 08 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, n/d * kronecker(20, d)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^10 + A)^7 / (eta(x^2 + A)^3 * eta(x^5 + A)^2 * eta(x^20 + A)^2), n))};

Formula

Expansion of q * (f(q) / chi(q)^3) * (f(q^5)^3 / chi(q^5)) in powers of q where chi(), f() are Ramanujan theta functions.
Expansion of q * f(q^5)^5 / f(q) - q^2 * f(-q^10)^5 / f(-q^2) in powers of q where f() is a Ramanujan theta function.
Euler transform of period 20 sequence [ -2, 1, -2, -1, 0, 1, -2, -1, -2, -4, -2, -1, -2, 1, 0, -1, -2, 1, -2, -4, ...].
a(n) is multiplicative with a(2^e) = -2^e if e>0, a(5^e) = 5^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 80^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138558.
G.f.: Sum_{k>0} -(-1)^k * k * x^k * (1 - x^(2*k)) * (1 - x^(6*k)) / (1 - x^(10*k)).
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(2*k-1)) * (1 + x^(2*k))^2 * (1 + x^(10*k-5))^2 * (1 - x^(10*k))^3.
G.f.: Sum_{k>0} f(10*k-1) - f(10*k-3) - f(10*k-7) + f(10*k-9) where f(k) := x^k / (1 + x^k)^2.
a(n) = -(-1)^n * A129303(n).

A111580 Expansion of eta(q)^2 * eta(q^2) * eta(q^10)^3 / eta(q^5)^2 in powers of q.

Original entry on oeis.org

1, -2, -2, 4, 1, 4, -6, -8, 7, -2, 12, -8, -12, 12, -2, 16, -16, -14, 20, 4, 12, -24, -22, 16, 1, 24, -20, -24, 30, 4, 32, -32, -24, 32, -6, 28, -36, -40, 24, -8, 42, -24, -42, 48, 7, 44, -46, -32, 43, -2, 32, -48, -52, 40, 12, 48, -40, -60, 60, -8, 62, -64, -42, 64, -12, 48, -66, -64, 44, 12, 72, -56, -72, 72
Offset: 1

Views

Author

Michael Somos, Aug 08 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 - 2*q^3 + 4*q^4 + q^5 + 4*q^6 - 6*q^7 - 8*q^8 + 7*q^9 - 2*q^10 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 249, Entry 8(i).

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Mod[n/d, 2]*d*KroneckerSymbol[d, 5], {d, Divisors[n]}]; Table[a[n], {n, 1, 74}](* Jean-François Alcover, May 11 2012, after PARI *)
    a[ n_] := SeriesCoefficient[ (1/16) (EllipticTheta[ 2, 0, q]^3 EllipticTheta[ 2, 0, q^5] - 5 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^5]^3), {q, 0, 2 n}]; (* Michael Somos, Jul 12 2012 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d * kronecker( d, 5)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^10 + A)^3 / eta(x^5 + A)^2, n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q)^2*eta(q^2)*eta(q^10)^3/eta(q^5)^2) \\ Altug Alkan, Apr 18 2018

Formula

Expansion of q * psi(q)^3 * psi(q^5) - 5*q^2 * psi(q) * psi(q^5)^3 in powers of q where psi() is a Ramanujan theta function.
Euler transform of period 10 sequence [-2, -3, -2, -3, 0, -3, -2, -3, -2, -4, ...].
G.f.: Sum_{k>0} Kronecker(k, 5) * k * x^k / (1 - x^(2*k)) = x * Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k)) * (1 + x^(5*k))^2 * (1 - x^(10*k)).
a(2*n) = -2*a(n).
From Amiram Eldar, Jan 28 2024: (Start)
a(n) = (-1)^(n+1) * A138558(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(12*sqrt(5)) = 0.367818... . (End)
Showing 1-2 of 2 results.