A363799 Numbers whose binary representation has more 1-bits than its cube.
407182835067, 445317119867, 478351981947, 814365670134, 873268508637, 890634239734, 956703963894, 956703964539, 1628731340268, 1746537017274, 1781268479468, 1913407927788, 1913407929078, 2774213097787, 3257462680536, 3493074034548, 3562536958936, 3573277243773
Offset: 1
Examples
407182835067 is a term because A000120(407182835067) = 29, while A192085(407182835067) = A000120(407182835067^3) = 28.
Links
- Chris K. Caldwell and G. L. Honaker, Jr., 445317119867, Prime Curios!
- K. G. Hare, S. Laishram, and T. Stoll, Stolarsky's conjecture and the sum of digits of polynomial values, arXiv:1001.4169 [math.NT], 2010. See p. 3.
- Thomas Stoll, On Stolarsky's conjecture: The sum of digits of n and n^h, Slides, 2010.
Programs
-
PARI
isok(k) = hammingweight(k) > hammingweight(k^3); \\ Michel Marcus, Aug 07 2023
Extensions
a(9)-a(18) from Martin Ehrenstein, Jul 31 2023
Comments