cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138750 a(n) = ceiling(n/2) if n == 2 (mod 3), a(n) = 2n otherwise.

Original entry on oeis.org

0, 2, 1, 6, 8, 3, 12, 14, 4, 18, 20, 6, 24, 26, 7, 30, 32, 9, 36, 38, 10, 42, 44, 12, 48, 50, 13, 54, 56, 15, 60, 62, 16, 66, 68, 18, 72, 74, 19, 78, 80, 21, 84, 86, 22, 90, 92, 24, 96, 98, 25, 102, 104, 27, 108, 110, 28, 114, 116, 30, 120, 122, 31, 126, 128, 33, 132, 134, 34
Offset: 0

Views

Author

M. F. Hasler, Mar 28 2008

Keywords

Comments

This map is inspired by A124123, which hides in fact a variation of the Collatz problem, defined on the set of primes and working mod 3 instead of mod 2. See A138751 for more information.
The use of ceiling() is here equivalent to round().
The main reason for defining this function is to write A124123 as complement of A007918(A138750(A000040)), and to express the recursion function occurring there in terms of this map.
It might have been more natural to define this map as a(n) = 2n if n == 1 (mod 3), a(n) = ceiling(n/2) otherwise, which is equivalent for all primes > 3 (which are either == 1 or == 2 (mod 3)) and would have "better" properties regarding the analysis of orbits of all integers under this map.
However, for the prime n=3 it does make a difference, and in order to reproduce the map occurring in A124123, we had to adopt the present convention.

Examples

			a(0) = 2*0 = 0, a(1) = 2*1 = 2, a(3) = 2*3 = 6, a(4) = 2*4 = 8, ... since these indices are not congruent to 2 (mod 3).
a(2) = ceiling(2/2) = 1, a(5) = ceiling(5/2) = 3, a(8) = ceiling(8/2) = 4, a(11) = ceiling(11/2) = 6, ... since these indices are congruent to 2 (mod 3).
		

Crossrefs

Cf. A001281, A124123, A138751, A138752, A138753, A008588 (trisection), A016933 (trisection), A032766 (trisection)

Programs

  • Mathematica
    Table[If[Mod[n,3]==2,Ceiling[n/2],2n],{n,0,70}] (* or *) LinearRecurrence[{0,0,1,0,0,1,0,0,-1},{0,2,1,6,8,3,12,14,4},70] (* Harvey P. Dale, Nov 20 2013 *)
  • PARI
    A138750(n) = if( n%3==2, ceil(n/2), 2*n )

Formula

G.f.: x*(2 + x + 6*x^2 + 6*x^3 + 2*x^4 + 6*x^5 + 4*x^6) / ( (1+x)*(x^2-x+1)*(x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Oct 16 2013
a(n) = a(n-3) + a(n-6) - a(n-9); a(0)=0, a(1)=2, a(2)=1, a(3)=6, a(4)=8, a(5)=3, a(6)=12, a(7)=14, a(8)=4. - Harvey P. Dale, Nov 20 2013
Sum_{n>=1} (-1)^n/a(n) = log(3)/2 - log(2)/3 = log(27/4)/6. - Amiram Eldar, Jul 26 2024