A138784 a(n) = n*(n-1)*(n-2)(27*n^3 - 174*n^2 + 511*n - 552)*n!/48.
0, 0, 108, 5232, 154200, 3747600, 82908000, 1756661760, 36715472640, 770648256000, 16426162368000, 358029745920000, 8015066233574400, 184788598259865600, 4394609711331840000, 107899664364011520000
Offset: 1
Links
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, arXiv:0804.1849v3 [math.CO] 9 May 2008 (p. 29).
Programs
-
Magma
[n*(n-1)*(n-2)*(27*n^3-174*n^2+511*n-552)*Factorial(n)/48: n in [1..25]]; // Vincenzo Librandi, Dec 08 2015
-
Maple
A138784 := proc(n) n*(n-1)*(n-2)*(27*n^3-174*n^2+511*n-552)*factorial(n)/48 ; end proc: seq(A138784(n),n=1..30) ;
-
Mathematica
Table[n (n - 1) (n - 2) (27 n^3 - 174 n^2 + 511 n - 552) n!/48, {n, 25}] (* Vincenzo Librandi, Dec 08 2015 *)
-
PARI
a(n) = n*(n-1)*(n-2)*(27*n^3-174*n^2+511*n-552)*n!/48; \\ Altug Alkan, Dec 07 2015
Formula
D-finite 9*(n-3) *(4179399*n -20778487) *a(n) +(-37614591*n^3 -15080676*n^2 +317158871*n +3150537632) *a(n-1) +2*(44621643*n +200235296) *(-1+n)^2*a(n-2)=0. - R. J. Mathar, Dec 10 2015
Comments