A138785 Triangle read by rows: T(n,k) is the number of hook lengths equal to k among all hook lengths of all partitions of n (1 <= k <= n).
1, 2, 2, 4, 2, 3, 7, 6, 3, 4, 12, 8, 6, 4, 5, 19, 16, 12, 8, 5, 6, 30, 22, 18, 12, 10, 6, 7, 45, 38, 27, 24, 15, 12, 7, 8, 67, 52, 45, 32, 25, 18, 14, 8, 9, 97, 82, 63, 52, 40, 30, 21, 16, 9, 10, 139, 112, 93, 72, 60, 42, 35, 24, 18, 10, 11, 195, 166, 135, 112, 85, 72, 49, 40, 27, 20, 11, 12
Offset: 1
Examples
T(4,2) = 6 because for the partitions (4), (3,1), (2,2), (2,1,1), (1,1,1,1) of n=4 the hook length multi-sets are {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1}, respectively, containing altogether six 2's. Triangle starts: 1; 2, 2; 4, 2, 3; 7, 6, 3, 4; 12, 8, 6, 4, 5; 19, 16, 12, 8, 5, 6; 30, 22, 18, 12, 10, 6, 7; 45, 38, 27, 24, 15, 12, 7, 8; 67, 52, 45, 32, 25, 18, 14, 8, 9; 97, 82, 63, 52, 40, 30, 21, 16, 9, 10;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- R. Bacher and L. Manivel, Hooks and powers of parts in partitions, Sem. Lotharingien de Combinatoire, 47, 2002, B47d.
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, arXiv:0804.1849v3 [math.CO] 9 May 2008 (p. 24).
Programs
-
Maple
g:=sum(k*x^k*t^k/((1-x^k)*(product(1-x^m,m=1..50))),k=1..50): gser:= simplify(series(g,x=0,15)): for n to 12 do P[n]:= sort(coeff(gser,x,n)) end do: for n to 12 do seq(coeff(P[n],t,j),j=1..n) end do; # yields sequence in triangular form # second program: b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i=1, [1, n], (p-> (g-> p(p(b(n, i-1), g), [0$i, g[1]]))(`if`(i>n, [0], b(n-i, i))))( (f, g)-> zip((x, y)-> x+y, f, g, 0)))) end: T:= n-> (l-> seq(l[i+1]*i, i=1..n))(b(n$2)): seq(T(n), n=1..14); # Alois P. Heinz, Mar 22 2012
-
Mathematica
max = 12; s = Series[Sum[k*t^k*x^k/((1 - x^k)*Product[1 - x^m, {m, 1, max}]), {k, 1, max}] , {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *) Table[Count[Flatten@IntegerPartitions@n, k]*k, {n, 12}, {k, n}] // Flatten (* Robert Price, Jun 15 2020 *)
Formula
T(n,1) = A000070(n-1).
Sum_{k=1..n} k*T(n,k) = A066183(n).
G.f.: Sum(k*t^k*x^k/[(1-x^k)*Product(1-x^m, m=1..infinity)], k=1..infinity).
T(n,k) = k*A066633(n,k).
T(n,k) = Sum_{j=1..n} A207383(j,k). - Omar E. Pol, May 02 2012
Comments