A138825 Divisors of 16775168 (the 5th perfect number divided by 2), written in base 2.
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1111111111111, 11111111111110, 111111111111100, 1111111111111000, 11111111111110000, 111111111111100000
Offset: 1
Examples
The structure of divisors of 16775168 (see A138815) ..................................................................... n ............... Divisor . Formula ....... Divisor written in base 2 ..................................................................... 1) .................... 1 = 2^0 ........... 1 2) .................... 2 = 2^1 ........... 10 3) .................... 4 = 2^2 ........... 100 4) .................... 8 = 2^3 ........... 1000 5) ................... 16 = 2^4 ........... 10000 6) ................... 32 = 2^5 ........... 100000 7) ................... 64 = 2^6 ........... 1000000 8) .................. 128 = 2^7 ........... 10000000 9) .................. 256 = 2^8 ........... 100000000 10) ................. 512 = 2^9 ........... 1000000000 11) ................ 1024 = 2^10 .......... 10000000000 12) A134708(5) = ... 2048 = 2^11 .......... 100000000000 13) A000668(5) = ... 8191 = 2^13 - 2^0 .... 1111111111111 14) ............... 16382 = 2^14 - 2^1 .... 11111111111110 15) ............... 32764 = 2^15 - 2^2 .... 111111111111100 16) ............... 65528 = 2^16 - 2^3 .... 1111111111111000 17) .............. 131056 = 2^17 - 2^4 .... 11111111111110000 18) .............. 262112 = 2^18 - 2^5 .... 111111111111100000 19) .............. 524224 = 2^19 - 2^6 .... 1111111111111000000 20) ............. 1048448 = 2^20 - 2^7 .... 11111111111110000000 21) ............. 2096896 = 2^21 - 2^8 .... 111111111111100000000 22) ............. 4193792 = 2^22 - 2^9 .... 1111111111111000000000 23) ............. 8387584 = 2^23 - 2^10 ... 11111111111110000000000 24) A133028(5) = 16775168 = 2^24 - 2^11 ... 111111111111100000000000
Crossrefs
Programs
-
Mathematica
FromDigits[IntegerDigits[#,2]]&/@Divisors[16775168] (* Harvey P. Dale, May 26 2015 *)
Comments