cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A175271 Base-8 pandigital primes.

Original entry on oeis.org

17119607, 17120573, 17121077, 17127839, 17128931, 17132347, 17135413, 17136029, 17136869, 17148349, 17159479, 17164757, 17181683, 17184119, 17185463, 17185981, 17194171, 17196383, 17196733, 17200373, 17202347
Offset: 1

Views

Author

M. F. Hasler, May 27 2010

Keywords

Comments

Base-8 pandigital primes must have at least 9 octal digits, since sum(d_i 8^i) = sum(d_i) (mod 7), and 0+1+...+6+7 is divisible by 7. So the smallest ones should be of the form "10123...." in base 8, where "...." is a permutation of "4567". By chance, the identical permutation already yields a prime: a(1)="101234567" in base-8.

Crossrefs

Programs

  • PARI
    pdp( b=8/*base*/, c=199/* # of terms to produce */) = { my(t, a=[], bp=vector(b,i,b^(b-i))~, offset=b*(b^b-1)/(b-1)); for( i=1,b-1, offset+=b^b; for( j=0,b!-1, isprime(t=offset-numtoperm(b,j)*bp) | next; #(a=concat(a,t))
    				

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A175280 Base-9 pandigital primes: primes having at least one of each digit 0,...,8 when written in base 9.

Original entry on oeis.org

393474749, 393474821, 393475373, 393481069, 393486901, 393488437, 393492797, 393494477, 393499429, 393499517, 393500741, 393528029, 393528517, 393538157, 393541693, 393544709, 393545861, 393546149, 393551189, 393551357, 393552629
Offset: 1

Views

Author

M. F. Hasler, May 30 2010

Keywords

Comments

Terms in this sequence have at least 10 digits in base 9, i.e., are larger than 9^9, since sum(d_i 9^i) = sum(d_i) (mod 8), and 0+1+2+3+4+5+6+7+8 is divisible by 4. So there must be at least one repeated digit, which may not be even, else the resulting number is even. The smallest terms are therefore of the form "10123...." in base 9, where "...." is a permutation of "45678", cf. examples.

Examples

			The first terms of this sequence, i.e., smallest base-9 pandigital primes, are "1012346785", "1012346875", "1012347658", "1012356487", "1012365487", "1012367584", "1012374568", "1012376845", "1012384657", ... (written in base 9).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4*10^8], Min @ DigitCount[#, 9] > 0 && PrimeQ[#] &] (* Amiram Eldar, Apr 13 2021 *)
  • PARI
    pdp( b=9/*base*/, c=99/* # of terms to produce */) = { my(t, a=[], bp=vector(b,i,b^(b-i))~, offset=b*(b^b-1)/(b-1)); for( i=1,b-1, offset+=b^b; for( j=0,b!-1, isprime(t=offset-numtoperm(b,j)*bp) | next; #(a=concat(a,t))
    				

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A175279 Base-7 pandigital primes: primes having at least one of each digit 0,...,6 when written in base 7.

Original entry on oeis.org

863231, 863279, 863867, 863897, 864203, 864251, 865379, 865871, 865877, 866011, 866399, 866653, 866693, 867641, 867719, 868033, 868069, 868081, 868103, 868121, 868123, 868327, 868423, 868453, 868669, 868787, 868793, 868801, 868943, 868999
Offset: 1

Views

Author

M. F. Hasler, May 30 2010

Keywords

Comments

Terms in this sequence have at least 8 digits in base 7, i.e., are larger than 7^7, since sum(d_i 7^i) = sum(d_i) (mod 6), and 0+1+2+3+4+5+6 is divisible by 3. So there must be at least one repeated digit, which may not be 0 nor 6 neither odd (else the resulting number is even). The smallest terms are therefore of the form "1022...." in base 7, where "...." is a permutation of "3456", cf. examples.

Examples

			The smallest base-7 pandigital primes are "10223465", "10223564", "10225364", "10225436", "10226354" and "10226453", written in base 7.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Min @ DigitCount[#, 7] > 0 && PrimeQ[#] &] (* Amiram Eldar, Apr 13 2021 *)
  • PARI
    base7(n)={ local(a=[n%7]);while(0
    				

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A175272 Base-12 pandigital primes.

Original entry on oeis.org

8989787252711, 8989787311891, 8989787313343, 8989787458763, 8989787707627, 8989787709211, 8989787710927, 8989787764211, 8989787806099, 8989787810719, 8989787959879, 8989787974883, 8989787992747, 8989787999743, 8989788058351
Offset: 1

Views

Author

M. F. Hasler, Mar 19 2010

Keywords

Comments

These numbers need to have at least 13 digits in base 12 since any permutation of the digits 0,...,9,A,B will result in a number divisible by 11. For the same reason, it must be digit different from 0 which is repeated. Thus the smallest terms in this sequence are written "10123456....." in base 12, where ..... is a permutation of {7,8,9,A,B}.
Note: Due to the implementation of numtoperm(), the PARI script will not necessarily print the terms in the correct order. In some cases, more than the desired number of terms have to be calculated, and vecsort() to be used to get the correct sequence. - M. F. Hasler, May 27 2010

Examples

			8989787252711, 8989787311891, 8989787313343, 8989787458763, ... are written "101234568A79B", "10123456B8A97", "10123456B98A7", "1012345769A8B", ... in base 12 (where A=digit 10, B=digit 11).
		

Crossrefs

Programs

  • PARI
    pdp( b=12/* base */, c=20/* #terms to print */)={ my(t,bp=vector(b,i,b^(b-i))~, offset=b*(b^b-1)/(b-1) /* to fix order of permutations CBA..321 => 012...9AB */); for( i=1,b-1, /* add initial digit */ offset += b^b; for( j=0,b!-1, isprime(t=offset-numtoperm(b,j)*bp) & !print1(t", ") & !c-- & return))}

Extensions

Order of the terms corrected by M. F. Hasler, May 27 2010

A175273 Base-16 pandigital primes.

Original entry on oeis.org

18528729602926047181, 18528729602926100221, 18528729602926108411, 18528729602926112701, 18528729602926116331, 18528729602926234591, 18528729602926235071, 18528729602927029471, 18528729602927225551
Offset: 1

Views

Author

M. F. Hasler, May 27 2010

Keywords

Comments

Base-16 (a.k.a. hexadecimal, sexadecimal, senidenary or hexadecadic) pandigital primes must have at least 17 hexadecimal digits (i.e. they are larger than 16^16 = 2^64 > 10^19), since sum(d_i 16^i) = sum(d_i) (mod 15), and 0+1+...+14+15 is divisible by 15. So the smallest ones should be of the form "101234567...." in base 16, where "...." is a permutation of "89ABCDEF".
The same reasoning shows that numbers of this form ("1012...") are congruent to 1 modulo 15 and thus modulo 30 (since also = 1 [mod 2]). This explains that all terms < 2*16^16 end in the (decimal!) digit 1.
a(n) == 1 (mod 30) for a(n) < 2^65 = 3.69*10^19.

Crossrefs

Programs

  • PARI
    pdp( b=16/*base*/, c=99/* # of terms to produce */) = { my(t, a=[], bp=vector(b,i,b^(b-i))~, offset=b*(b^b-1)/(b-1)); for( i=1,b-1, offset+=b^b; for( j=0,b!-1, isprime(t=offset-numtoperm(b,j)*bp) | next; #(a=concat(a,t))
    				

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A175274 Base-20 pandigital primes: primes having at least one of each digit 0,...,19, when written in base 20.

Original entry on oeis.org

105148064265927977839670339, 105148064265927977839838717, 105148064265927977839990337, 105148064265927977842711099, 105148064265927977843159537, 105148064265927977846038379
Offset: 1

Views

Author

M. F. Hasler, May 27 2010

Keywords

Comments

Base-20 pandigital primes must have at least 21 base-20 digits (i.e. they are larger than 20^20 > 10^26), since sum(d_i 20^i) = sum(d_i) (mod 19), and 0+1+...+18+19 is divisible by 19. So the smallest ones should be of the form "10123456789ABCD..." in base 20, where "..." is a permutation of "EFHGIJ" (with A..J representing digits 10..19).

Crossrefs

Programs

  • PARI
    pdp( b=20/*base*/, c=99/* # of terms to produce */) = { my(t, a=[], bp=vector(b,i,b^(b-i))~, offset=b*(b^b-1)/(b-1)); for( i=1,b-1, offset+=b^b; for( j=0,b!-1, isprime(t=offset-numtoperm(b,j)*bp) | next; #(a=concat(a,t))
    				

A175275 Base-3 pandigital primes: primes having at least one of each digit 0,1,2 when written in base 3.

Original entry on oeis.org

11, 19, 29, 47, 59, 61, 73, 83, 89, 97, 101, 103, 107, 113, 127, 137, 139, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 251, 257, 263, 269, 277, 281, 293, 307, 311, 313, 317, 331, 347, 349, 353, 359, 379, 383, 389, 397, 409, 419, 421, 431, 433, 439
Offset: 1

Views

Author

M. F. Hasler, May 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[500], Min @ DigitCount[#, 3] > 0 && PrimeQ[#] &] (* Amiram Eldar, Apr 13 2021 *)
  • PARI
    base(n,b=16,s=0)={local(a=[n%b]);while(09,s,48)+a[i])),a)}
    forprime(p=1,999,#Set(base(p,3))==3&print1(p","))

A175276 Base-4 pandigital primes: primes having at least one of each digit 0,1,2,3, when written in base 4.

Original entry on oeis.org

283, 313, 331, 397, 419, 433, 457, 541, 557, 569, 587, 647, 653, 659, 709, 809, 929, 1051, 1063, 1069, 1123, 1163, 1171, 1181, 1187, 1201, 1213, 1249, 1259, 1291, 1307, 1319, 1327, 1423, 1427, 1459, 1481, 1483, 1543, 1549, 1559, 1567, 1571, 1579, 1583
Offset: 1

Views

Author

M. F. Hasler, May 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[300]],Min[DigitCount[#,4]]>0&] (* Harvey P. Dale, Apr 15 2012 *)
  • PARI
    base(n,b=4,s=0)={local(a=[n%b]);while(09,s,48)+a[i])),a)}
    forprime(p=1,1999,#Set(base(p,4))==4 & print1(p","))

A175277 Base-5 pandigital primes: primes having at least one of each digit 0,1,2,3,4, when written in base 5.

Original entry on oeis.org

3319, 3323, 3347, 3469, 3491, 3539, 3547, 3559, 3571, 3607, 3613, 3617, 3691, 3823, 3847, 3863, 4019, 4079, 4139, 4327, 4423, 4483, 4493, 4519, 4523, 4603, 4759, 4903, 4951, 5039, 5059, 5107, 5113, 5147, 5179, 5227, 5273, 5279, 5351, 5477, 5507, 5527
Offset: 1

Views

Author

M. F. Hasler, May 27 2010

Keywords

Comments

Terms in this sequence have at least 6 digits in base 5, i.e., are larger than 5^5, since sum(d_i 5^i) = sum(d_i) (mod 4), and 0+1+2+3+4 is divisible by 2. So the smallest ones should be of the form "10...." in base 5, where "...." is a permutation of "1234". By chance the identical permutation already yields a prime, i.e. a(1) = "101234" in base 5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[800]],Min[DigitCount[#,5]]>0&] (* Harvey P. Dale, Mar 10 2019 *)
  • PARI
    base(n,b=5,s=0)={local(a=[n%b]);while(09,s,48)+a[i])),a)}
    forprime(p=5^5,5^6,#Set(base(p,5))==5 & print1(p","))

A175278 Base-6 pandigital primes: primes having at least one of each digit 0,1,2,3,4,5 when written in base 6.

Original entry on oeis.org

48761, 50033, 50051, 50069, 50101, 50207, 50231, 50311, 50461, 51131, 51137, 51151, 51461, 51503, 51511, 51721, 52181, 52391, 52541, 52571, 52583, 53731, 53881, 54091, 54121, 55001, 57191, 58481, 58901, 60161, 62591, 62921, 63029
Offset: 1

Views

Author

M. F. Hasler, May 30 2010

Keywords

Comments

Terms in this sequence have at least 7 digits in base 6, i.e., are larger than 6^6, since sum(d_i 6^i) = sum(d_i) (mod 5), and 0+1+2+3+4+5 is divisible by 5. So the smallest ones should be of the form "101...." in base 6, where "...." is a permutation of "2345". Actually there is only one such prime, cf. examples.

Examples

			The smallest base-6 pandigital prime is written "1013425" in base 6.
The next smallest such prime is "1023345"[6]; note that here the "3" is repeated, since there is no such prime of the form "102wxyz" with w=0, 1 or 2. (Using the same reasoning as in the comment, it follows that the (7-digit base-6 pandigital) number has the same parity as the repeated digit, which therefore must be odd to get a prime.)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60000], Min @ DigitCount[#, 6] > 0 && PrimeQ[#] &] (* Amiram Eldar, Apr 13 2021 *)
  • PARI
    base(n,b=6)={ local(a=[n%b]);while(0
    				

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010
Showing 1-10 of 14 results. Next