cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A138914 G.f. A(x) satisfies: 5*A(x) = A(A(A(A(x)))) + 4*x + x^2 with A(0)=0.

Original entry on oeis.org

1, 1, 12, 390, 18304, 1071862, 73349996, 5661162666, 482252816998, 44704184452202, 4465265748489708, 477159108766899654, 54255973609630750372, 6536766146592886952548, 831617552461457925554152
Offset: 1

Views

Author

Paul D. Hanna, Apr 03 2008

Keywords

Comments

A(A(A(A(x)))) is the 4th self-composition of the g.f. A(x).

Examples

			G.f.: A(x) = x + x^2 + 12*x^3 + 390*x^4 + 18304*x^5 + 1071862*x^6 +...
A(A(x)) = x + 2*x^2 + 26*x^3 + 841*x^4 + 39440*x^5 + 2308752*x^6 +...
A(A(A(x))) = x + 3*x^2 + 42*x^3 + 1359*x^4 + 63730*x^5 + 3730610*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 60*x^3 + 1950*x^4 + 91520*x^5 + 5359310*x^6 +...
so that 5*A(x) = A(A(A(A(x)))) + 4*x + x^2.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2,G);if(n<1,0,for(i=3,n+1,G=x; for(j=1,4,G=subst(A,x,G+x*O(x^i)));A=A+polcoeff(G,i)*x^i);polcoeff(A,n))}

A138915 G.f. A(x) satisfies: 6*A(x) = A(A(A(A(A(x))))) + 5*x + x^2 with A(0)=0.

Original entry on oeis.org

1, 1, 20, 1070, 82620, 7950630, 893138136, 113042205894, 15776443441194, 2393774318253534, 391021817774684352, 68276246115093735882, 12675272091572931300360, 2491402163326687657447940
Offset: 1

Views

Author

Paul D. Hanna, Apr 03 2008

Keywords

Comments

A(A(A(A(A(x))))) is the 5th self-composition of the g.f. A(x).

Examples

			G.f.: A(x) = x + x^2 + 20*x^3 + 1070*x^4 + 82620*x^5 +...
A(A(x)) = x + 2*x^2 + 42*x^3 + 2241*x^4 + 172960*x^5 +...
A(A(A(x))) = x + 3*x^2 + 66*x^3 + 3519*x^4 + 271550*x^5 +...
A(A(A(A(x)))) = x + 4*x^2 + 92*x^3 + 4910*x^4 + 378944*x^5 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 120*x^3 + 6420*x^4 + 495720*x^5 +...
so that 6*A(x) = A(A(A(A(A(x))))) + 5*x + x^2.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2,G);if(n<1,0,for(i=3,n+1,G=x; for(j=1,5,G=subst(A,x,G+x*O(x^i)));A=A+polcoeff(G,i)*x^i);polcoeff(A,n))}

A138916 G.f. A(x) satisfies: 7*A(x) = A(A(A(A(A(A(x)))))) + 6*x + x^2 with A(0)=0.

Original entry on oeis.org

1, 1, 30, 2385, 273560, 39078970, 6512700536, 1222156339336, 252751878117712, 56798072762849412, 13733835430565197700, 3548014267149570778764, 974073193845291808779496, 283008950620416071533339000
Offset: 1

Views

Author

Paul D. Hanna, Apr 03 2008

Keywords

Comments

A(A(A(A(A(A(x)))))) is the 6th self-composition of the g.f. A(x).

Examples

			G.f.: A(x) = x + x^2 + 30*x^3 + 2385*x^4 + 273560*x^5 +...
A(A(x)) = x + 2*x^2 + 62*x^3 + 4921*x^4 + 564280*x^5 +...
A(A(A(x))) = x + 3*x^2 + 96*x^3 + 7614*x^4 + 872950*x^5 +...
A(A(A(A(x)))) = x + 4*x^2 + 132*x^3 + 10470*x^4 + 1200384*x^5 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 170*x^3 + 13495*x^4 + 1547420*x^5 +...
A(A(A(A(A(A(x)))))) = x + 6*x^2 + 210*x^3 + 16695*x^4 + 1914920*x^5 +...
so that 7*A(x) = A(A(A(A(A(A(x)))))) + 6*x + x^2.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2,G);if(n<1,0,for(i=3,n+1,G=x; for(j=1,6,G=subst(A,x,G+x*O(x^i)));A=A+polcoeff(G,i)*x^i);polcoeff(A,n))}
Showing 1-3 of 3 results.