A138929 Twice the prime powers A000961.
2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 32, 34, 38, 46, 50, 54, 58, 62, 64, 74, 82, 86, 94, 98, 106, 118, 122, 128, 134, 142, 146, 158, 162, 166, 178, 194, 202, 206, 214, 218, 226, 242, 250, 254, 256, 262, 274, 278, 298, 302, 314, 326, 334, 338, 346, 358, 362, 382
Offset: 1
Keywords
Links
Programs
-
Maple
a := n -> `if`(1>=nops(numtheory[factorset](n)),2*n,NULL): seq(a(i),i=1..192); # Peter Luschny, Aug 12 2009
-
Mathematica
Join[{2}, Select[ Range[3, 1000], PrimeQ[ Cyclotomic[#, -1]] &]] (* Robert G. Wilson v, Mar 25 2012 - modified by Paolo Xausa, Aug 30 2024 to include a(1) *) 2*Join[{1}, Select[Range[500], PrimePowerQ]] (* Paolo Xausa, Aug 30 2024 *)
-
PARI
print1(2);for( i=1,999, isprime( polcyclo(i,-1)) & print1(",",i)) /* use ...subst(polcyclo(i),x,-2)... in PARI < 2.4.2. It should be more efficient to calculate a(n) as 2*A000961(n) ! */
-
Python
from sympy import primepi, integer_nthroot def A138929(n): def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) kmin, kmax = 0,1 while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax<<1 # Chai Wah Wu, Aug 29 2024
Comments