cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A125061 Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2
Offset: 0

Views

Author

Michael Somos, Nov 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]^2 + 3*EllipticTheta[3, 0, q^3]^2)/4 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015, from 2nd formula *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, ((d%2) * ((d%3==0)+1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
         [p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) in powers of q.
Expansion of (theta_3(q)^2 + 3*theta_3(q^3)^2) / 4 in powers of q.
Euler transform of period 12 sequence [ 1, 0, 2, -2, 1, -2, 1, -2, 2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1-(-1)^e)/2 if p == 3 (mod 4).
G.f.: 1 + Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122857.
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 3 * A008441(n). a(6*n + 1) = A002175(n). a(6*n + 5) = 2 * A121444(n). a(8*n + 1) = A113407(n). a(8*n + 3) = 3 * A113407(n). a(8*n + 5) = 2 * A053692(n). a(8*n + 7) = 6 * A053692(n). a(9*n) = A125061(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 24 2023

A138952 Expansion of (eta(q^2)^7 * eta(q^3)^2 * eta(q^12) / (eta(q)^2 * eta(q^4)^3 * eta(q^6)^3) - 1) / 2 in powers of q.

Original entry on oeis.org

1, -1, -3, -1, 2, 3, 0, -1, 1, -2, 0, 3, 2, 0, -6, -1, 2, -1, 0, -2, 0, 0, 0, 3, 3, -2, -3, 0, 2, 6, 0, -1, 0, -2, 0, -1, 2, 0, -6, -2, 2, 0, 0, 0, 2, 0, 0, 3, 1, -3, -6, -2, 2, 3, 0, 0, 0, -2, 0, 6, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, -9, 0, 0, 6, 0
Offset: 1

Views

Author

Michael Somos, Apr 03 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 - 3*q^3 - q^4 + 2*q^5 + 3*q^6 - q^8 + q^9 - 2*q^10 + 3*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, KroneckerSymbol[ -4, n/#] {1, 1, -2}[[Mod[#, 3, 1]]] &]]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # == 2, -1, # == 3, -1 + 2 (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger@n)]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^2] QPochhammer[ q^3] / QPochhammer[ -q^3] - 1) / 2, {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker(-4, n/d) * [-2, 1, 1][d%3 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -1, p==3, -1 + 2 * (-1)^e, p%12 < 6, e+1, 1-e%2 )))};

Formula

Expansion of (phi(q) * phi(-q^2) * chi(-q^3) / chi(q^3) - 1) / 2 in powers of q where phi(), chi() are Ramanujan theta functions.
Moebius transform is period 24 sequence [1, -2, -4, 0, 1, 8, -1, 0, 4, -2, -1, 0, 1, 2, -4, 0, 1, -8, -1, 0, 4, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 if e>0, a(3^e) = -1 + 2 * (-1)^e, a(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12).
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = -(-1)^n * A138950(n). 2 * a(n) = A138951(n).
a(2*n) = - A138950(n). a(2*n + 1) = A116604(n). - Michael Somos, Sep 07 2015
a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). - Michael Somos, Sep 07 2015
Showing 1-2 of 2 results.