A138979 Number of 4 X n matrices containing a 1 in the top left entry, all entries are integer values and adjacent entries differ by at most 1.
27, 771, 22979, 690437, 20780181, 625649047, 18838482047, 567241901289, 17080173559277, 514300085627023, 15486061794514775, 466299978310573033, 14040733816061115637, 422779788989982722559, 12730299739840800975879, 383321378409770250813777
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..600
- Index entries for linear recurrences with constant coefficients, signature (45,-528,2592,-5997,5689,812,-4760,1942,278,-112).
Programs
-
Maple
a:= n-> (Matrix([2,4,4,2,4,2,2,4,2,1]). Matrix([[3,4,2,2,2,0,1,0,1,0], [2,5,3,2,3,1,1,3,2,1], [1,3,5,1,4,2,2,4,2,1], [2,4,2,3,4,2,2,4,2,1], [1,3,4,2,7,3,3,6,3,2], [0,2,4,2,6,4,2,6,2,2], [1,2,4,2,6,2,4,6,2,2], [0,3,4,2,6,3,3,7,3,2], [1,4,4,2,6,2,2,6,4,2], [0,4,4,2,8,4,4,8,4,3]])^(n-1) .Matrix([[1],[1],[1],[1],[1],[1],[1],[1],[1],[1]]))[1,1]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 28 2008
-
Mathematica
LinearRecurrence[{45, -528, 2592, -5997, 5689, 812, -4760, 1942, 278, -112}, {27, 771, 22979, 690437, 20780181, 625649047, 18838482047, 567241901289, 17080173559277, 514300085627023}, 20] (* Paolo Xausa, Mar 17 2024 *)
Formula
a(n)=b(n)+c(n)+d(n)+e(n)+f(n)+g(n)+h(n)+j(n)+k(n)+l(n), where
b(1)=2,c(1)=4,d(1)=4,e(1)=2,f(1)=4,g(1)=2,h(1)=2,j(1)=4,k(1)=2,l(1)=1
b(n+1)=3*b(n)+2*c(n)+1*d(n)+2*e(n)+1*f(n)+0*g(n)+1*h(n)+0*j(n)+1*k(n)+0*l(n)
c(n+1)=4*b(n)+5*c(n)+3*d(n)+4*e(n)+3*f(n)+2*g(n)+2*h(n)+3*j(n)+4*k(n)+4*l(n)
d(n+1)=2*b(n)+3*c(n)+5*d(n)+2*e(n)+4*f(n)+4*g(n)+4*h(n)+4*j(n)+4*k(n)+4*l(n)
e(n+1)=2*b(n)+2*c(n)+1*d(n)+3*e(n)+2*f(n)+2*g(n)+2*h(n)+2*j(n)+2*k(n)+2*l(n)
f(n+1)=2*b(n)+3*c(n)+4*d(n)+4*e(n)+7*f(n)+6*g(n)+6*h(n)+6*j(n)+6*k(n)+8*l(n)
g(n+1)=0*b(n)+1*c(n)+2*d(n)+2*e(n)+3*f(n)+4*g(n)+2*h(n)+3*j(n)+2*k(n)+4*l(n)
h(n+1)=1*b(n)+1*c(n)+2*d(n)+2*e(n)+3*f(n)+2*g(n)+4*h(n)+3*j(n)+2*k(n)+4*l(n)
j(n+1)=0*b(n)+3*c(n)+4*d(n)+4*e(n)+6*f(n)+6*g(n)+6*h(n)+7*j(n)+6*k(n)+8*l(n)
k(n+1)=1*b(n)+2*c(n)+2*d(n)+2*e(n)+3*f(n)+2*g(n)+2*h(n)+3*j(n)+4*k(n)+4*l(n)
l(n+1)=0*b(n)+1*c(n)+1*d(n)+1*e(n)+2*f(n)+2*g(n)+2*h(n)+2*j(n)+2*k(n)+3*l(n).
G.f.: -x*(-27 +116*x^9 -206*x^8 +5284*x^6 -2464*x^7 -154*x^5 +6514*x^3 -6915*x^4 -2540*x^2 +444*x) / (1 -45*x -1942*x^8 +528*x^2 -278*x^9 -2592*x^3 +112*x^10 +5997*x^4 -5689*x^5 -812*x^6 +4760*x^7). - Alois P. Heinz, Sep 02 2014
Extensions
More terms from Alois P. Heinz, Aug 28 2008
Comments