A139031 Imaginary part of (4 + 3i)^n.
3, 24, 117, 336, -237, -10296, -76443, -354144, -922077, 1476984, 34867797, 242017776, 1064447283, 2465133864, -6890111163, -116749235904, -761741108157, -3175197967656, -6358056037323, 28515500892816, 387075408075603, 2383715742284424, 9392840736385317, 15549832333971936
Offset: 1
Examples
a(3) = 117 since (4 + 3i)^3 = (-44 + 117i). a(4) = 336 = 8*a(3) - 25*a(2) = 8*117 - 25*24. a(3) = 117 = term (2,1) of [4,-3; 3,4]^3.
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-25).
Programs
-
Mathematica
a[n_]:=Im[(4+3I)^n];Array[a,24] (* James C. McMahon, Jun 25 2025 *)
-
PARI
a(n) = imag((4 + 3*I)^n); \\ Michel Marcus, Jun 25 2025
Formula
Imaginary part of (4 + 3i)^n.
Term (2,1) of [4,-3; 3,4]^n.
a(n)^2 + A139030(n)^2 = 5^(2*n).
a(n) = 8*a(n-1) - 25*a(n-2), n>2, given a(1) = 3, a(2) = 24.
O.g.f.: 3*x/(1-8*x+25*x^2). - R. J. Mathar, Apr 08 2008
Comments