A139100 Triangle read by rows: row n lists all partitions of n in the order produced by the shell model of partitions A138151.
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 2, 3, 3, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 2, 4, 3, 3, 2, 2, 6, 1, 4, 2, 1, 3, 3, 1, 2, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4
Offset: 1
Examples
Triangle begins: {(1)} {(2), (1, 1)} {(3), (2, 1), (1, 1, 1)} {(4), (2, 2), (3, 1), (2, 1, 1), (1, 1, 1, 1)} {(5), (3, 2), (4, 1), (2, 2, 1), (3, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}
Links
- Robert Price, Table of n, a(n) for n = 1..7043, 17 rows.
Crossrefs
Programs
-
Mathematica
Table[If[n == 1, ConstantArray[{1}, i - n + 1], Map[(Join[#, ConstantArray[{1}, i - n]]) &, Cases[IntegerPartitions[n], x_ /; Last[x] != 1]]], {i, 7}, {n, i, 1, -1}] // Flatten(* Robert Price, May 28 2020 *)
Comments