cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A026791 Triangle in which n-th row lists juxtaposed lexicographically ordered partitions of n; e.g., the partitions of 3 (1+1+1,1+2,3) appear as 1,1,1,1,2,3 in row 3.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 4, 1, 2, 3, 1, 5, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Differs from A080576 in a(18): Here, (...,1+3,2+2,4), there (...,2+2,1+3,4).
The representation of the partitions (for fixed n) is as (weakly) increasing lists of parts, the order between individual partitions (for the same n) is lexicographic (see example). - Joerg Arndt, Sep 03 2013
The equivalent sequence for compositions (ordered partitions) is A228369. - Omar E. Pol, Oct 19 2019

Examples

			First six rows are:
[[1]];
[[1, 1], [2]];
[[1, 1, 1], [1, 2], [3]];
[[1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], [4]];
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3], [5]];
[[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 2, 2], [1, 1, 4], [1, 2, 3], [1, 5], [2, 2, 2], [2, 4], [3, 3], [6]];
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms:
----------------------------------
.                     Ordered
n  j      Diagram     partition j
----------------------------------
.               _
1  1           |_|    1;
.             _ _
2  1         | |_|    1, 1,
2  2         |_ _|    2;
.           _ _ _
3  1       | | |_|    1, 1, 1,
3  2       | |_ _|    1, 2,
3  3       |_ _ _|    3;
.         _ _ _ _
4  1     | | | |_|    1, 1, 1, 1,
4  2     | | |_ _|    1, 1, 2,
4  3     | |_ _ _|    1, 3,
4  4     |   |_ _|    2, 2,
4  5     |_ _ _ _|    4;
...
(End)
		

Crossrefs

Row lengths are given in A006128.
Partition lengths are in A193173.
Row lengths are A000041.
Partition sums are A036042.
Partition minima are A196931.
Partition maxima are A194546.
The reflected version is A211992.
The length-sensitive version (sum/length/lex) is A036036.
The colexicographic version (sum/colex) is A080576.
The version for non-reversed partitions is A193073.
Compositions under the same ordering (sum/lex) are A228369.
The reverse-lexicographic version (sum/revlex) is A228531.
The Heinz numbers of these partitions are A334437.

Programs

  • Maple
    T:= proc(n) local b, ll;
          b:= proc(n,l)
                if n=0 then ll:= ll, l[]
              else seq(b(n-i, [l[], i]), i=`if`(l=[],1,l[-1])..n)
                fi
              end;
          ll:= NULL; b(n, []); ll
        end:
    seq(T(n), n=1..8);  # Alois P. Heinz, Jul 16 2011
  • Mathematica
    T[n0_] := Module[{b, ll}, b[n_, l_] := If[n == 0, ll = Join[ll, l], Table[ b[n - i, Append[l, i]], {i, If[l == {}, 1, l[[-1]]], n}]]; ll = {}; b[n0, {}]; ll]; Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Aug 05 2015, after Alois P. Heinz *)
    Table[DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions[n]], x_ /; x == 0, 2], {n, 7}] // Flatten (* Robert Price, May 18 2020 *)
  • Python
    t = [[[]]]
    for n in range(1, 10):
        p = []
        for minp in range(1, n):
            p += [[minp] + pp for pp in t[n-minp] if min(pp) >= minp]
        t.append(p + [[n]])
    print(t)
    # Andrey Zabolotskiy, Oct 18 2019

A138879 Sum of all parts of the last section of the set of partitions of n.

Original entry on oeis.org

1, 3, 5, 11, 15, 31, 39, 71, 94, 150, 196, 308, 389, 577, 750, 1056, 1353, 1881, 2380, 3230, 4092, 5412, 6821, 8935, 11150, 14386, 17934, 22834, 28281, 35735, 43982, 55066, 67551, 83821, 102365, 126267, 153397, 188001, 227645, 277305, 334383
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2008

Keywords

Comments

Row sums of the triangles A135010, A138121, A138151 and others related to the section model of partitions (see A135010 and A138121).
From Omar E. Pol, Jan 20 2021: (Start)
Convolution of A000203 and A002865.
Convolution of A340793 and A000041.
Row sums of triangles A339278, A340426, A340583. (End)
a(n) is also the sum of all divisors of all terms of n-th row of A336811. These divisors are also all parts in the last section of the set of partitions of n. - Omar E. Pol, Jul 27 2021
Row sums of A336812. - Omar E. Pol, Aug 03 2021

Examples

			a(6)=31 because the parts of the last section of the set of partitions of 6 are (6), (3,3), (4,2), (2,2,2), (1), (1), (1), (1), (1), (1), (1), so the sum is a(6) = 6 + 3 + 3 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 31.
From _Omar E. Pol_, Aug 13 2013: (Start)
Illustration of initial terms:
.                                           _ _ _ _ _ _
.                                          |_ _ _ _ _ _|
.                                          |_ _ _|_ _ _|
.                                          |_ _ _ _|_ _|
.                               _ _ _ _ _  |_ _|_ _|_ _|
.                              |_ _ _ _ _|           |_|
.                     _ _ _ _  |_ _ _|_ _|           |_|
.                    |_ _ _ _|         |_|           |_|
.             _ _ _  |_ _|_ _|         |_|           |_|
.       _ _  |_ _ _|       |_|         |_|           |_|
.   _  |_ _|     |_|       |_|         |_|           |_|
.  |_|   |_|     |_|       |_|         |_|           |_|
.
.   1    3      5        11         15           31
.
(End)
On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the sum of all divisors of these terms is [1 + 2 + 3 + 6] + [1 + 2 + 4] + [1 + 3] + [1 + 2] + [1 + 2] + [1] + [1] = 31, so a(6) = 31. - _Omar E. Pol_, Jul 27 2021
		

Crossrefs

Programs

  • Maple
    A066186 := proc(n) n*combinat[numbpart](n) ; end proc:
    A138879 := proc(n) A066186(n)-A066186(n-1) ; end proc:
    seq(A138879(n),n=1..80) ; # R. J. Mathar, Jan 27 2011
  • Mathematica
    Table[PartitionsP[n]*n - PartitionsP[n-1]*(n-1), {n, 1, 50}] (* Vaclav Kotesovec, Oct 21 2016 *)
  • PARI
    for(n=1, 50, print1(numbpart(n)*n - numbpart(n - 1)*(n - 1),", ")) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory import npartitions
    print([npartitions(n)*n - npartitions(n - 1)*(n - 1) for n in range(1, 51)]) # Indranil Ghosh, Mar 19 2017

Formula

a(n) = A000041(n)*n - A000041(n-1)*(n-1) = A138880(n) + A000041(n-1).
a(n) = A066186(n) - A066186(n-1), for n>=1.
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi/(12*sqrt(2*n)) * (1 - (72 + 13*Pi^2) / (24*Pi*sqrt(6*n)) + (7/12 + 3/(2*Pi^2) + 217*Pi^2/6912)/n - (15*sqrt(3/2)/(16*Pi) + 115*Pi/(288*sqrt(6)) + 4069*Pi^3/(497664*sqrt(6)))/n^(3/2)). - Vaclav Kotesovec, Oct 21 2016, extended Jul 06 2019
G.f.: x*(1 - x)*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017

Extensions

a(34) corrected by R. J. Mathar, Jan 27 2011

A138880 Sum of all parts of all partitions of n that do not contain 1 as a part.

Original entry on oeis.org

0, 2, 3, 8, 10, 24, 28, 56, 72, 120, 154, 252, 312, 476, 615, 880, 1122, 1584, 1995, 2740, 3465, 4620, 5819, 7680, 9575, 12428, 15498, 19824, 24563, 31170, 38378, 48224, 59202, 73678, 90055, 111384, 135420, 166364, 201630, 246120, 297045, 360822
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2008

Keywords

Comments

Sum of all parts > 1 of the last section of the set of partitions of n.
Row sums of triangle A182710. Also row sums of other similar triangles as A138136 and A182711.
Partial sums give A194552. - Omar E. Pol, Sep 23 2013

Crossrefs

Programs

  • Mathematica
    Table[Total[Flatten[Select[IntegerPartitions[n],FreeQ[#,1]&]]],{n,50}] (* Harvey P. Dale, May 24 2015 *)
    a[n_] := (PartitionsP[n] - PartitionsP[n-1])*n; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 07 2015 *)

Formula

a(n) = A002865(n)*n = (A000041(n) - A000041(n-1))*n = A138879(n) - A000041(n-1).
a(n) ~ Pi^2/6*A000070(n-2). - Peter Bala, Dec 23 2013
G.f.: x*f'(x), where f(x) = Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2*n)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n) + (217*Pi^2/6912 + 9/(2*Pi^2) + 13/8)/n). - Vaclav Kotesovec, Jul 06 2019

Extensions

Better definition from Omar E. Pol, Sep 23 2013

A138151 Irregular triangle read by rows in which rows 1..n (when read together) list all the parts in the partitions of n and row n starts with the partitions of n that do not contain 1 as a part (in the order used for A080577).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 4, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 5, 2, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 6, 2, 5, 3, 4, 4, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 7, 2, 6, 3, 5, 4, 5, 2, 2, 4, 3, 2, 3, 3, 3, 3, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Mar 21 2008

Keywords

Comments

The remainder of row n is necessarily A000041(n-1) 1's.
Previous name: A shell model of partitions. Row n lists the parts of the last section of the set of partitions of n.
Row n lists the nonzero terms of the n-th row of A138136 together with A000041(n-1) 1's.
Row n is also the n-th row of A138138 in reverse order.

Examples

			Triangle begins:
1
2,1
3,1,1
4,2,2,1,1,1
5,3,2,1,1,1,1,1,
6,4,2,3,3,2,2,2,1,1,1,1,1,1,1
7,5,2,4,3,3,2,2,1,1,1,1,1,1,1,1,1,1,1
8,6,2,5,3,4,4,4,2,2,3,3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
9,7,2,6,3,5,4,5,2,2,4,3,2,3,3,3,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
		

Crossrefs

Mirror of A138138.
Row lengths give A138137.
Row sums give A138879.
Column 1 gives A000027.
Right border gives A000012.
Another version is A138121 which is the mirror of A135010.

Programs

  • Mathematica
    Table[Cases[IntegerPartitions[n], x_ /; Last[x] != 1] ~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 8}] // Flatten (* Robert Price, May 22 2020 *)

Extensions

New name and comments edited by Peter Munn and Omar E. Pol, Jul 25 2025

A181317 Triangle in which n-th row lists all partitions of n, in the order of increasing smallest numbers of prime signatures.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 4, 1, 1, 1, 3, 2, 2, 3, 2, 1, 1, 2
Offset: 1

Views

Author

Alois P. Heinz, Jan 26 2011

Keywords

Comments

The parts of each partition are listed in decreasing order.
Differs from A080577 at a(48) and from A036037 at a(56). A181087 uses the same order for all partitions.

Examples

			[3,1,1,1] and [2,2,2] are both partitions of 6, the smallest numbers having these prime signatures are 2^3*3^1*5^1*7^1=840 and 2^2*3^2*5^2=900, thus [3,1,1,1] < [2,2,2] in this order.
Triangle begins:
  [1];
  [2], [1,1];
  [3], [2,1], [1,1,1];
  [4], [3,1], [2,2], [2,1,1], [1,1,1,1];
  [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1];
  [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [3,1,1,1], [2,2,2];
  ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local b, ll;  # gives all parts of partitions of row n
      b:= proc(n,i,l)
            if n<0 then
          elif n=0 then ll:= ll, [mul(ithprime(t)^l[t], t=1..nops(l)), l]
          elif i=0 then
          else b(n-i, i, [l[], i]), b(n, i-1, l)
            fi
      end;
      ll:= NULL; b(n,n,[]);
      map(h-> h[2][], sort([ll], (x,y)-> x[1]
    				
  • Mathematica
    f[P_] := Times @@ (Prime[Range[Length[P]]]^P);
    row[n_] := SortBy[IntegerPartitions[n], f];
    Array[row, 7] // Flatten (* Jean-François Alcover, Feb 16 2021 *)

A139094 Largest part of the n-th row in the integrated diagram of the shell model of partitions.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 3, 4, 6, 3, 4, 5, 7, 2, 3, 4, 4, 5, 6, 8, 3, 3, 4, 5, 5, 6, 7, 9, 2, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 10, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 9, 11, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 12
Offset: 1

Views

Author

Omar E. Pol, May 26 2008

Keywords

Crossrefs

Showing 1-6 of 6 results.