A183006 a(n) = 24*A138879(n).
24, 72, 120, 264, 360, 744, 936, 1704, 2256, 3600, 4704, 7392
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A066186 := proc(n) n*combinat[numbpart](n) ; end proc: A138879 := proc(n) A066186(n)-A066186(n-1) ; end proc: A002865 := proc(n) if n = 0 then 1; else combinat[numbpart](n)-combinat[numbpart](n-1) ; end if; end proc: A183012 := proc(n) if n = 1 then 23; else 24*A138879(n)-A002865(n) ; end if; end proc: seq(A183012(n),n=1..80) ; # R. J. Mathar, Jan 27 2011
Triangle begins: [1]; [1],[2]; [1],[1],[3]; [1],[1],[1],[2,2],[4]; [1],[1],[1],[1],[1],[2,3],[5]; [1],[1],[1],[1],[1],[1],[1],[2,2,2],[2,4],[3,3],[6]; ... From _Omar E. Pol_, Sep 03 2013: (Start) Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in the ordering mentioned in A026791. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6. --------------------------------------------------------- n j Diagram Parts Parts --------------------------------------------------------- . _ 1 1 |_| 1; 1; . _ 2 1 | |_ 1, 1, 2 2 |_ _| 2; 2; . _ 3 1 | | 1, 1, 3 2 | |_ _ 1, 1, 3 3 |_ _ _| 3; 3; . _ 4 1 | | 1, 1, 4 2 | | 1, 1, 4 3 | |_ _ _ 1, 1, 4 4 | |_ _| 2,2, 2,2, 4 5 |_ _ _ _| 4; 4; . _ 5 1 | | 1, 1, 5 2 | | 1, 1, 5 3 | | 1, 1, 5 4 | | 1, 1, 5 5 | |_ _ _ _ 1, 1, 5 6 | |_ _ _| 2,3, 2,3, 5 7 |_ _ _ _ _| 5; 5; . _ 6 1 | | 1, 1, 6 2 | | 1, 1, 6 3 | | 1, 1, 6 4 | | 1, 1, 6 5 | | 1, 1, 6 6 | | 1, 1, 6 7 | |_ _ _ _ _ 1, 1, 6 8 | | |_ _| 2,2,2, 2,2,2, 6 9 | |_ _ _ _| 2,4, 2,4, 6 10 | |_ _ _| 3,3, 3,3, 6 11 |_ _ _ _ _ _| 6; 6; ... (End)
with(combinat): T:= proc(m) local b, ll; b:= proc(n, i, l) if n=0 then ll:=ll, l[] else seq(b(n-j, j, [l[], j]), j=i..n) fi end; ll:= NULL; b(m, 2, []); [1$numbpart(m-1)][], ll end: seq(T(n), n=1..10); # Alois P. Heinz, Feb 19 2012
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[ Array[1 &, {PartitionsP[n - 1]}], Sort[ Reverse /@ Select[ IntegerPartitions[n], FreeQ[#, 1] &], less] ] // Flatten; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 14 2013 *) Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]]~Join~ DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 9}] // Flatten (* Robert Price, May 12 2020 *)
a(0) = 1, a(1) = 2*1 + 1 = 3, a(2) = 2*3 + 2 = 8, a(3) = 2*8 + 4 = 20, a(4) = 2*20 + 8 = 48, a(5) = 2*48 + 16 = 112, a(6) = 2*112 + 32 = 256, ... - _Philippe Deléham_, Apr 19 2009 a(2) = 8 since there are 8 length-4 binary sequences with a subsequence of ones of length 2 or more, namely, 1111, 1110, 1101, 1011, 0111, 1100, 0110, and 0011. - _Dennis P. Walsh_, Oct 25 2012 G.f. = 1 + 3*x + 8*x^2 + 20*x^3 + 48*x^4 + 112*x^5 + 256*x^6 + 576*x^7 + ...
List([0..35],n->(n+2)*2^(n-1)); # Muniru A Asiru, Sep 25 2018
a001792 n = a001792_list !! n a001792_list = scanl1 (+) a045623_list -- Reinhard Zumkeller, Jul 21 2013
[(n+2)*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Nov 10 2014
A001792 := n-> (n+2)*2^(n-1); spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/4, n=2..30); # Zerinvary Lajos, Oct 09 2006 A001792:=-(-3+4*z)/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, which gives the sequence without the initial 1 G(x):=1/exp(2*x)*(1-x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(abs(f[n]),n=0..28 ); # Zerinvary Lajos, Apr 17 2009 a := n -> hypergeom([-n, 2], [1], -1); seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
matrix[n_Integer /; n >= 1] := Table[Abs[p - q] + 1, {q, n}, {p, n}]; a[n_Integer /; n >= 1] := Abs[Det[matrix[n]]] (* Josh Locker (joshlocker(AT)macfora.com), Apr 29 2004 *) g[n_,m_,r_] := Binomial[n - 1, r - 1] Binomial[m + 1, r] r; Table[1 + Sum[g[n, k - n, r], {r, 1, k}, {n, 1, k - 1}], {k, 1, 29}] (* Geoffrey Critzer, Jul 02 2009 *) a[n_] := (n + 2)*2^(n - 1); a[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *) LinearRecurrence[{4, -4}, {1, 3}, 40] (* Harvey P. Dale, Aug 29 2011 *) CoefficientList[Series[(1 - x) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *) b[i_]:=i; a[n_]:=Abs[Det[ToeplitzMatrix[Array[b, n], Array[b, n]]]]; Array[a, 40] (* Stefano Spezia, Sep 25 2018 *) a[n_]:=Hypergeometric2F1[2,-n+1,1,-1];Array[a,32] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
A001792(n)=(n+2)<<(n-1) \\ M. F. Hasler, Dec 17 2008
for n in range(0,40): print(int((n+2)*2**(n-1)), end=' ') # Stefano Spezia, Oct 16 2018
Triangle begins: [1]; [2],[1]; [3],[1],[1]; [4],[2,2],[1],[1],[1]; [5],[3,2],[1],[1],[1],[1],[1]; [6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1]; [7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1]; ... The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences. --------------------------------------------------------- Partitions A194805 Table 1.0 . of 7 p(n) A194551 A135010 --------------------------------------------------------- 7 15 7 7 . . . . . . 4+3 4 4 . . . 3 . . 5+2 5 5 . . . . 2 . 3+2+2 3 3 . . 2 . 2 . 6+1 11 6 1 6 . . . . . 1 3+3+1 3 1 3 . . 3 . . 1 4+2+1 4 1 4 . . . 2 . 1 2+2+2+1 2 1 2 . 2 . 2 . 1 5+1+1 7 1 5 5 . . . . 1 1 3+2+1+1 1 3 3 . . 2 . 1 1 4+1+1+1 5 4 1 4 . . . 1 1 1 2+2+1+1+1 2 1 2 . 2 . 1 1 1 3+1+1+1+1 3 1 3 3 . . 1 1 1 1 2+1+1+1+1+1 2 2 1 2 . 1 1 1 1 1 1+1+1+1+1+1+1 1 1 1 1 1 1 1 1 1 . 1 --------------- . *<------- A000041 -------> 1 1 2 3 5 7 11 . A182712 -------> 1 0 2 1 4 3 . A182713 -------> 1 0 1 2 2 . A182714 -------> 1 0 1 1 . 1 0 1 . A141285 A182703 1 0 . A182730 A182731 1 --------------------------------------------------------- . A138137 --> 1 2 3 6 9 15.. --------------------------------------------------------- . A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747 --------------------------------------------------------- . . A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733 . . . . . 1 . . . . . . . . 2 1 . . . . . . 3 . . 1 2 . . . . Table 2.0 . . 2 2 1 . . 3 . Table 2.1 . . . . . 1 2 2 . . . 1 . . . . . . A182982 A182742 A194803 A182983 A182743 . A182992 A182994 A194804 A182993 A182995 --------------------------------------------------------- . From _Omar E. Pol_, Sep 03 2013: (Start) Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6. Illustration of initial terms: --------------------------------------- n j Diagram Parts --------------------------------------- . _ 1 1 |_| 1; . _ _ 2 1 |_ | 2, 2 2 |_| . 1; . _ _ _ 3 1 |_ _ | 3, 3 2 | | . 1, 3 3 |_| . . 1; . _ _ _ _ 4 1 |_ _ | 4, 4 2 |_ _|_ | 2, 2, 4 3 | | . 1, 4 4 | | . . 1, 4 5 |_| . . . 1; . _ _ _ _ _ 5 1 |_ _ _ | 5, 5 2 |_ _ _|_ | 3, 2, 5 3 | | . 1, 5 4 | | . . 1, 5 5 | | . . 1, 5 6 | | . . . 1, 5 7 |_| . . . . 1; . _ _ _ _ _ _ 6 1 |_ _ _ | 6, 6 2 |_ _ _|_ | 3, 3, 6 3 |_ _ | | 4, 2, 6 4 |_ _|_ _|_ | 2, 2, 2, 6 5 | | . 1, 6 6 | | . . 1, 6 7 | | . . 1, 6 8 | | . . . 1, 6 9 | | . . . 1, 6 10 | | . . . . 1, 6 11 |_| . . . . . 1; ... (End)
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *) Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}] // Flatten (* Robert Price, May 11 2020 *)
a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9. a(4)=20 because A000041(4)=5 and 4*5=20.
a066186 = sum . concat . ps 1 where ps _ 0 = [[]] ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)] -- Reinhard Zumkeller, Jul 13 2013
with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
PartitionsP[ Range[0, 60] ] * Range[0, 60]
a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
from sympy import npartitions def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
[n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
In the triangle T(j,k) for j = 6 the number of regions in the last section of the set of partitions of 6 is equal to 4. The first region given by [2] has rank 2-1 = 1. The second region given by [4,2] has rank 4-2 = 2. The third region given by [3] has rank 3-1 = 2. The fourth region given by [6,3,2,2,1,1,1,1,1,1,1] has rank 6-11 = -5 (see below): From _Omar E. Pol_, Aug 12 2013: (Start) --------------------------------------------------------- . Regions Illustration of ranks of the regions --------------------------------------------------------- . For J=6 k=1 k=2 k=3 k=4 . _ _ _ _ _ _ _ _ _ _ _ _ . |_ _ _ | _ _ _ . | . |_ _ _|_ | _ _ _ _ * * .| . | . |_ _ | | _ _ * * . | . | . |_ _|_ _|_ | * .| .| . | . | | . | . | | .| . | | *| . | | *| . | | *| . | | *| . |_| *| . So row 6 lists: 1 2 2 -5 (End) Written as a triangle begins: 0; 0; 0; 1,-1; 2,-2; 1,2,2,-5; 2,3,3,-8; 1,2,2,2,4,3,-14; 2,3,3,3,2,4,4,-21; 1,2,2,2,4,3,1,3,5,5,4,-32; 2,3,3,3,2,4,4,1,4,3,5,6,5,-45; 1,2,2,2,4,3,1,3,5,5,4,-2,2,4,4,5,3,6,6,5,-65; 2,3,3,3,2,4,4,1,4,3,5,6,5,-3,3,5,5,4,5,4,7,7,6,-88;
Contribution from Omar E. Pol, Nov 26 2011 (Start): Written as a triangle: 1; 3; 5; 2,9; 3,12; 2,6,3,20; 3,7,4,25; 2,6,3,13,5,4,38; 3,7,4,14,3,9,5,49; 2,6,3,13,5,4,23,4,10,6,5,69; 3,7,4,14,3,9,5,27,5,4,15,7,6,87; 2,6,3,13,5,4,23,4,10,6,5,39,3,9,5,19,4,12,7,6,123; (End) From _Omar E. Pol_, Aug 18 2013: (Start) Illustration of initial terms (first seven regions): . _ _ _ _ _ . _ _ _ |_ _ _ _ _| . _ _ _ _ |_ _ _| |_ _| . _ _ |_ _ _ _| |_| . _ _ _ |_ _| |_ _| |_| . _ _ |_ _ _| |_| |_| . _ |_ _| |_| |_| |_| . |_| |_| |_| |_| |_| . . 1 3 5 2 9 3 12 . (End)
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2]; A186412 = {}; l = {}; For[j = 1, j <= 50, j++, mx = Max@lex[j][[j]]; AppendTo[l, mx]; For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]]; AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]]; ]; A186412 (* Robert Price, Jul 25 2020 *)
Illustration of initial terms. First six rows of triangle as sums of columns from the last sections of the first six natural numbers (or as sums of columns from the six sections of 6): . 6 . 3 3 . 4 2 . 2 2 2 . 5 1 . 3 2 1 . 4 1 1 . 2 2 1 1 . 3 1 1 1 . 2 1 1 1 1 . 1 1 1 1 1 1 . --- --- ------- --------- ----------- -------------- A: 1, 2,1, 3,1,1, 6,3,1,1, 8,3,2,1,1, 15,8,4,2,1,1 . | |/| |/|/| |/|/|/| |/|/|/|/| |/|/|/|/|/| B: 1, 1,1, 2,0,1, 3,2,0,1, 5,1,1,0,1, 7,4,2,1,0,1 . A := initial terms of this triangle. B := initial terms of triangle A182703. . Triangle begins: 1; 2, 1; 3, 1, 1; 6, 3, 1, 1; 8, 3, 2, 1, 1; 15, 8, 4, 2, 1, 1; 19, 8, 5, 3, 2, 1, 1; 32, 17, 9, 6, 3, 2, 1, 1; 42, 20, 13, 7, 5, 3, 2, 1, 1; 64, 34, 19, 13, 8, 5, 3, 2, 1, 1; 83, 41, 26, 16, 11, 7, 5, 3, 2, 1, 1; 124, 68, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1;
Triangle begins: [1]; [1, 2]; [1, 3], [1]; [1, 2, 4], [1, 2], [1]; [1, 5], [1, 3], [1, 2], [1], [1]; [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]; ... For n = 6 the 6th row of A336811 is [6, 4, 3, 2, 2, 1, 1] so replacing every term with its divisors we have {[1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]} the same as the 6th row of this triangle. Also, if the sequence is written as an irregular tetrahedron so the first six slices are: ------------- [1], ------------- [1, 2]; ------------- [1, 3], [1]; ------------- [1, 2, 4], [1, 2], [1]; ------------- [1, 5], [1, 3], [1, 2], [1], [1]; ------------- [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]; ------------- The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and the parts of the last section of the set of partitions of the positive integers. The table is infinite. It is formed by three zones as follows: The upper zone shows the last section of the set of partitions of every positive integer. The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above. Finally the middle zone shows the connection between the upper zone and the lower zone. For every positive integer the numbers in the upper zone are the same numbers as in the lower zone. |---|---------|-----|-------|---------|-----------|-------------|---------------| | n | | 1 | 2 | 3 | 4 | 5 | 6 | |---|---------|-----|-------|---------|-----------|-------------|---------------| | | | | | | | | 6 | | P | | | | | | | 3 3 | | A | | | | | | | 4 2 | | R | | | | | | | 2 2 2 | | T | | | | | | 5 | 1 | | I | | | | | | 3 2 | 1 | | T | | | | | 4 | 1 | 1 | | I | | | | | 2 2 | 1 | 1 | | O | | | | 3 | 1 | 1 | 1 | | N | | | 2 | 1 | 1 | 1 | 1 | | S | | 1 | 1 | 1 | 1 | 1 | 1 | |---|---------|-----|-------|---------|-----------|-------------|---------------| . |---|---------|-----|-------|---------|-----------|-------------|---------------| | | A207031 | 1 | 2 1 | 3 1 1 | 6 3 1 1 | 8 3 2 1 1 | 15 8 4 2 1 1 | | L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| | |/|/|/|/|/| | | I | A182703 | 1 | 1 1 | 2 0 1 | 3 2 0 1 | 5 1 1 0 1 | 7 4 2 1 0 1 | | N | | * | * * | * * * | * * * * | * * * * * | * * * * * * | | K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 | 1 2 3 4 5 6 | | | | = | = = | = = = | = = = = | = = = = = | = = = = = = | | | A207383 | 1 | 1 2 | 2 0 3 | 3 4 0 4 | 5 2 3 0 5 | 7 8 6 4 0 6 | |---|---------|-----|-------|---------|-----------|-------------|---------------| . |---|---------|-----|-------|---------|-----------|-------------|---------------| | | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 | 1 2 3 6 | | D |---------|-----|-------|---------|-----------|-------------|---------------| | I | A027750 | | | 1 | 1 2 | 1 3 | 1 2 4 | | V |---------|-----|-------|---------|-----------|-------------|---------------| | I | A027750 | | | | 1 | 1 2 | 1 3 | | S |---------|-----|-------|---------|-----------|-------------|---------------| | O | A027750 | | | | | 1 | 1 2 | | R | A027750 | | | | | 1 | 1 2 | | S |---------|-----|-------|---------|-----------|-------------|---------------| | | A027750 | | | | | | 1 | | | A027750 | | | | | | 1 | |---|---------|-----|-------|---------|-----------|-------------|---------------| . Note that every row in the lower zone lists A027750. The "section" is the simpler substructure of the set of partitions of n that has this property in the three zones. Also the lower zone for every positive integer can be constructed using the first n terms of A002865. For example: for n = 6 we consider the first 6 terms of A002865 (that is [1, 0, 1, 1, 2, 2]) and then the 6th slice is formed by a block with the divisors of 6, no block with the divisors of 5, one block with the divisors of 4, one block with the divisors of 3, two blocks with the divisors of 2 and two blocks with the divisors of 1. Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base. The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n). The above table shows the growth step by step of both the prism of partitions and its associated tower since the number of parts in the last section of the set of partitions of n is equal to A138137(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts in the last section of the set of partitions of n is equal to A138879(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
A336812[row_]:=Flatten[Table[ConstantArray[Divisors[row-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]]; Array[A336812,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 16 2023 *)
Comments