cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A350357 Irregular triangle read by rows in which row n lists all elements of the arrangement of the correspondence divisor/part related to the last section of the set of partitions of n in the following order: row n lists the n-th row of A138121 followed by the n-th row of A336812.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 3, 1, 4, 2, 2, 1, 1, 1, 1, 2, 4, 1, 2, 1, 5, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 2, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2021

Keywords

Examples

			Triangle begins:
[1], [1];
[2, 1], [1, 2];
[3, 1, 1], [1, 3, 1];
[4, 2, 2, 1, 1, 1], [1, 2, 4, 1, 2, 1];
[5, 3, 2, 1, 1, 1, 1, 1], [1, 5, 1, 3, 1, 2, 1, 1];
...
Illustration of the first six rows of triangle in an infinite table:
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| n |         |  1  |   2   |    3    |     4     |      5      |       6       |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   |         |     |       |         |           |             |  6            |
|   |         |     |       |         |           |             |  3 3          |
|   |         |     |       |         |           |             |  4 2          |
| P |         |     |       |         |           |             |  2 2 2        |
| A |         |     |       |         |           |  5          |    1          |
| R |         |     |       |         |           |  3 2        |      1        |
| T |         |     |       |         |  4        |    1        |      1        |
| S |         |     |       |         |  2 2      |      1      |        1      |
|   |         |     |       |  3      |    1      |      1      |        1      |
|   |         |     |  2    |    1    |      1    |        1    |          1    |
|   |         |  1  |    1  |      1  |        1  |          1  |            1  |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| D | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |  1 2 3     6  |
| I | A027750 |     |       |  1      |  1 2      |  1   3      |  1 2   4      |
| V | A027750 |     |       |         |  1        |  1 2        |  1   3        |
| I | A027750 |     |       |         |           |  1          |  1 2          |
| S | A027750 |     |       |         |           |  1          |  1 2          |
| O | A027750 |     |       |         |           |             |  1            |
| R | A027750 |     |       |         |           |             |  1            |
| S |         |     |       |         |           |             |               |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
For n = 6 in the upper zone of the above table we can see the parts of the last section of the set of partitions of 6 in reverse-colexicographic order in accordance with the 6th row of A138121.
In the lower zone of the table we can see the terms from the 6th row of A336812, these are the divisors of the numbers from the 6th row of A336811.
Note that in the lower zone of the table every row gives A027750.
The remarkable fact is that the elements in the lower zone of the arrangement are the same as the elements in the upper zone but in other order.
For an explanation of the connection of the elements of the upper zone with the elements of the lower zone, that is the correspondence divisor/part, see A336812 and A338156.
The growth of the upper zone of the table is in accordance with the growth of the modular prism described in A221529.
The growth of the lower zone of the table is in accordance with the growth of the tower described also in A221529.
The number of cubic cells added at n-th stage in each polycube is equal to A138879(10) = 150, hence the total number of cubic cells added at n-th stage is equal to 2*A138879(10) = 300, equaling the sum of the 10th row of this triangle.
		

Crossrefs

Companion of A350333.
Row sums give 2*A138879.
Row lengths give 2*A138137.

A138137 First differences of A006128.

Original entry on oeis.org

1, 2, 3, 6, 8, 15, 19, 32, 42, 64, 83, 124, 157, 224, 288, 395, 502, 679, 854, 1132, 1422, 1847, 2307, 2968, 3677, 4671, 5772, 7251, 8908, 11110, 13572, 16792, 20439, 25096, 30414, 37138, 44798, 54389, 65386, 78959, 94558, 113687, 135646, 162375, 193133
Offset: 1

Views

Author

Omar E. Pol, Mar 18 2008

Keywords

Comments

Number of parts in the last section of the set of partitions of n (see A135010, A138121).
Sum of largest parts in all partitions in the head of the last section of the set of partitions of n. - Omar E. Pol, Nov 07 2011
From Omar E. Pol, Feb 16 2021: (Start)
Convolution of A341062 and A000041.
Convolution of A000005 and A002865.
a(n) is also the total number of parts in the n-th section of the set of partitions of any positive integer >= n.
a(n) is also the total number of divisors of all terms in the n-th row of triangle A336811. These divisors are also all parts in the last section of the set of partitions of n. (End)

Examples

			From _Omar E. Pol_, Feb 19 2012: (Start)
Illustration of initial terms (n = 1..6) as sums of the first columns from the last sections of the first six natural numbers (or from the first six sections of 6):
.                                           6
.                                           3+3
.                                           4+2
.                                           2+2+2
.                              5              1
.                              3+2              1
.                    4           1              1
.                    2+2           1              1
.            3         1           1              1
.      2       1         1           1              1
.  1     1       1         1           1              1
. --- ----- ------- --------- ----------- --------------
.  1,  2,    3,      6,        8,          15,
...
Also, we can see that the sequence gives the number of parts in each section. For the number of odd/even parts (and more) see A207031, A207032 and also A206563. (End)
From _Omar E. Pol_, Aug 16 2013: (Start)
The geometric model looks like this:
.                                           _ _ _ _ _ _
.                                          |_ _ _ _ _ _|
.                                          |_ _ _|_ _ _|
.                                          |_ _ _ _|_ _|
.                               _ _ _ _ _  |_ _|_ _|_ _|
.                              |_ _ _ _ _|           |_|
.                     _ _ _ _  |_ _ _|_ _|           |_|
.                    |_ _ _ _|         |_|           |_|
.             _ _ _  |_ _|_ _|         |_|           |_|
.       _ _  |_ _ _|       |_|         |_|           |_|
.   _  |_ _|     |_|       |_|         |_|           |_|
.  |_|   |_|     |_|       |_|         |_|           |_|
.
.   1    2      3        6          8           15
.
(End)
On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the divisors of these terms are [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]. There are 15 divisors so a(6) = 15. - _Omar E. Pol_, Jul 27 2021
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        elif i>n then b(n, i-1)
        else f:= b(n, i-1); g:= b(n-i, i);
             [f[1]+g[1], f[2]+g[2] +g[1]]
          fi
        end:
    a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 19 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]]+g[[1]], f[[2]]+g[[2]]+g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[PartitionsP[n - 1] + Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 45}] (* Robert Price, May 01 2020 *)

Formula

a(n) = A006128(n) - A006128(n-1).
a(n) = A000041(n-1) + A138135(n). - Omar E. Pol, Nov 07 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(6*n/Pi^2)) / (8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 21 2016
G.f.: Sum_{i>=1} i*x^i * Product_{j=2..i} 1/(1 - x^j). - Ilya Gutkovskiy, Apr 04 2017

A138879 Sum of all parts of the last section of the set of partitions of n.

Original entry on oeis.org

1, 3, 5, 11, 15, 31, 39, 71, 94, 150, 196, 308, 389, 577, 750, 1056, 1353, 1881, 2380, 3230, 4092, 5412, 6821, 8935, 11150, 14386, 17934, 22834, 28281, 35735, 43982, 55066, 67551, 83821, 102365, 126267, 153397, 188001, 227645, 277305, 334383
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2008

Keywords

Comments

Row sums of the triangles A135010, A138121, A138151 and others related to the section model of partitions (see A135010 and A138121).
From Omar E. Pol, Jan 20 2021: (Start)
Convolution of A000203 and A002865.
Convolution of A340793 and A000041.
Row sums of triangles A339278, A340426, A340583. (End)
a(n) is also the sum of all divisors of all terms of n-th row of A336811. These divisors are also all parts in the last section of the set of partitions of n. - Omar E. Pol, Jul 27 2021
Row sums of A336812. - Omar E. Pol, Aug 03 2021

Examples

			a(6)=31 because the parts of the last section of the set of partitions of 6 are (6), (3,3), (4,2), (2,2,2), (1), (1), (1), (1), (1), (1), (1), so the sum is a(6) = 6 + 3 + 3 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 31.
From _Omar E. Pol_, Aug 13 2013: (Start)
Illustration of initial terms:
.                                           _ _ _ _ _ _
.                                          |_ _ _ _ _ _|
.                                          |_ _ _|_ _ _|
.                                          |_ _ _ _|_ _|
.                               _ _ _ _ _  |_ _|_ _|_ _|
.                              |_ _ _ _ _|           |_|
.                     _ _ _ _  |_ _ _|_ _|           |_|
.                    |_ _ _ _|         |_|           |_|
.             _ _ _  |_ _|_ _|         |_|           |_|
.       _ _  |_ _ _|       |_|         |_|           |_|
.   _  |_ _|     |_|       |_|         |_|           |_|
.  |_|   |_|     |_|       |_|         |_|           |_|
.
.   1    3      5        11         15           31
.
(End)
On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the sum of all divisors of these terms is [1 + 2 + 3 + 6] + [1 + 2 + 4] + [1 + 3] + [1 + 2] + [1 + 2] + [1] + [1] = 31, so a(6) = 31. - _Omar E. Pol_, Jul 27 2021
		

Crossrefs

Programs

  • Maple
    A066186 := proc(n) n*combinat[numbpart](n) ; end proc:
    A138879 := proc(n) A066186(n)-A066186(n-1) ; end proc:
    seq(A138879(n),n=1..80) ; # R. J. Mathar, Jan 27 2011
  • Mathematica
    Table[PartitionsP[n]*n - PartitionsP[n-1]*(n-1), {n, 1, 50}] (* Vaclav Kotesovec, Oct 21 2016 *)
  • PARI
    for(n=1, 50, print1(numbpart(n)*n - numbpart(n - 1)*(n - 1),", ")) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory import npartitions
    print([npartitions(n)*n - npartitions(n - 1)*(n - 1) for n in range(1, 51)]) # Indranil Ghosh, Mar 19 2017

Formula

a(n) = A000041(n)*n - A000041(n-1)*(n-1) = A138880(n) + A000041(n-1).
a(n) = A066186(n) - A066186(n-1), for n>=1.
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi/(12*sqrt(2*n)) * (1 - (72 + 13*Pi^2) / (24*Pi*sqrt(6*n)) + (7/12 + 3/(2*Pi^2) + 217*Pi^2/6912)/n - (15*sqrt(3/2)/(16*Pi) + 115*Pi/(288*sqrt(6)) + 4069*Pi^3/(497664*sqrt(6)))/n^(3/2)). - Vaclav Kotesovec, Oct 21 2016, extended Jul 06 2019
G.f.: x*(1 - x)*f'(x), where f(x) = Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017

Extensions

a(34) corrected by R. J. Mathar, Jan 27 2011

A336811 Irregular triangle read by rows T(n,k) in which the length of row n equals the partition number A000041(n-1) and every column k gives the positive integers A000027, with n >= 1 and k >= 1.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 1, 1, 6, 4, 3, 2, 2, 1, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2020

Keywords

Comments

In other words: row n lists A028310(n-1) blocks where the m-th block consists of A187219(m) copies of n - m + [m=1], with n >= 1 and m >= 1, where [] is the Iverson bracket. [Corrected by Paolo Xausa, Feb 10 2023]
All divisors of all terms in row n are also all parts in the last section of the set of partitions of n.
Thus all divisors of all terms of the first n rows of triangle are also all parts of all partitions of n. In other words: all divisors of the first A000070(n-1) terms of the sequence are also all parts of all partitions of n. - Omar E. Pol, Jun 19 2021
From Omar E. Pol, Jul 31 2021: (Start)
The number of k's in row n is equal to A002865(n-k), 1 <= k <= n.
The number of terms >= k in row n is equal to A000041(n-k), 1 <= k <= n.
The number of k's in the first n rows (or in the first A000070(n-1) terms of the sequence) is equal to A000041(n-k), 1 <= k <= n.
The number of terms >= k in the first n rows (or in the first A000070(n-1) terms of the sequence) is equal to A000070(n-k), 1 <= k <= n.
First n rows of triangle (or first A000070(n-1) terms of the sequence) in nonincreasing order give the n-th row of A176206. (End)

Examples

			Triangle begins:
1;
2;
3, 1;
4, 2, 1;
5, 3, 2, 1, 1;
6, 4, 3, 2, 2, 1, 1;
7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1;
8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1;
9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
For n = 6, by definition the length of row 6 is A000041(6-1) = A000041(5) = 7, so the row 6 of triangle has seven terms. Since every column lists the positive integers A000027 so the row 6 is [6, 4, 3, 2, 2, 1, 1].
Then we have that the divisors of the numbers of the 6th row are:
.
6th row of the triangle ---------->   6 4 3 2 2 1 1
                                      3 2 1 1 1
                                      2 1
                                      1
.
There are seven 1's, four 2's, two 3's, one 4 and one 6.
In total there are 7 + 4 + 2 + 1 + 1 = 15 divisors.
On the other hand the last section of the set of the partitions of 6 can be represented in several ways, five of them as shown below:
._ _ _ _ _ _
|_ _ _      |       6    6                  6                       6
|_ _ _|_    |     3 3    3 3              3   3                     3   3
|_ _    |   |     4 2    4 2            4       2                     4     2
|_ _|_ _|_  |   2 2 2    2 2 2        2   2       2                 2 2   2
          | |       1      1                        1                           1
          | |       1        1                        1                       1
          | |       1        1                          1                   1
          | |       1          1                          1               1
          | |       1          1                            1           1
          | |       1            1                            1       1
          |_|       1              1                            1   1
.
   Figure 1.  Figure 2.  Figure 3.        Figure 4.                   Figure 5.
.
In every figure there are seven 1's, four 2's, two 3's, one 4 and one 6, as shown also the 6th row of A182703.
In total there are 7 + 4 + 2 + 1 + 1 = A138137(6) = 15 parts in every figure.
Figure 5 is an arrangement that shows the correspondence between divisors and parts since the columns give the divisors of the terms of 6th row of triangle.
Finally we can see that all divisors of all numbers in the 6th row of the triangle are the same positive integers as all parts in the last section of the set of the partitions of 6.
Example edited by _Omar E. Pol_, Aug 10 2021
		

Crossrefs

Row sums give A000070.
Row n has length A000041(n-1).
Every column k gives A000027.
Companion of A176206.

Programs

  • Mathematica
    A336811[row_]:=Flatten[Table[ConstantArray[row-m,PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
    Array[A336811,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 10 2023 *)
  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--;); 1+s;}
    tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021

A221529 Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2013

Keywords

Comments

Since A000203(k) has a symmetric representation, both T(n,k) and the partial sums of row n can be represented by symmetric polycubes. For more information see A237593 and A237270. For another version see A245099. - Omar E. Pol, Jul 15 2014
From Omar E. Pol, Jul 10 2021: (Start)
The above comment refers to a symmetric tower whose terraces are the symmetric representation of sigma(i), for i = 1..n, starting from the top. The levels of these terraces are the partition numbers A000041(h-1), for h = 1 to n, starting from the base of the tower, where n is the length of the largest side of the base.
The base of the tower is the symmetric representation of A024916(n).
The height of the tower is equal to A000041(n-1).
The surface area of the tower is equal to A345023(n).
The volume (or the number of cubes) of the tower equals A066186(n).
The volume represents the n-th term of the convolution of A000203 and A000041, that is A066186(n).
Note that the terraces that are the symmetric representation of sigma(n) and the terraces that are the symmetric representation of sigma(n-1) both are unified in level 1 of the structure. That is because the first two partition numbers A000041 are [1, 1].
The tower is an object of the family of the stepped pyramid described in A245092.
T(n,k) can be represented with a set of A237271(k) right prisms of height A000041(n-k) since T(n,k) is the total number of cubes that are exactly below the parts of the symmetric representation of sigma(k) in the tower.
T(n,k) is also the sum of all divisors of all k's that are in the first n rows of triangle A336811, or in other words, in the first A000070(n-1) terms of the sequence A336811. Hence T(n,k) is also the sum of all divisors of all k's in the n-th row of triangle A176206.
The mentioned property is due to the correspondence between divisors and parts explained in A338156: all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
Therefore the set of all partitions of n >= 1 has an associated tower.
The partial column sums of A340583 give this triangle showing the growth of the structure of the tower.
Note that the convolution of A000203 with any integer sequence S can be represented with a symmetric tower or structure of the same family where its terraces are the symmetric representation of sigma starting from the top and the heights of the terraces starting from the base are the terms of the sequence S. (End)

Examples

			Triangle begins:
------------------------------------------------------
    n| k    1   2   3   4   5   6   7   8   9  10
------------------------------------------------------
    1|      1;
    2|      1,  3;
    3|      2,  3,  4;
    4|      3,  6,  4,  7;
    5|      5,  9,  8,  7,  6;
    6|      7, 15, 12, 14,  6, 12;
    7|     11, 21, 20, 21, 12, 12,  8;
    8|     15, 33, 28, 35, 18, 24,  8, 15;
    9|     22, 45, 44, 49, 30, 36, 16, 15, 13;
   10|     30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
    k    A000203         T(10,k)
    1       1   *  30   =   30
    2       3   *  22   =   66
    3       4   *  15   =   60
    4       7   *  11   =   77
    5       6   *   7   =   42
    6      12   *   5   =   60
    7       8   *   3   =   24
    8      15   *   2   =   30
    9      13   *   1   =   13
   10      18   *   1   =   18
                 A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
        _ _ _ _ _ _ _ _ _ _
  42   |_ _ _ _ _          |
       |_ _ _ _ _|_        |
       |_ _ _ _ _ _|_      |
       |_ _ _ _      |     |
       |_ _ _ _|_ _ _|_    |
       |_ _ _ _        |   |
       |_ _ _ _|_      |   |
       |_ _ _ _ _|_    |   |
       |_ _ _      |   |   |
       |_ _ _|_    |   |   |
       |_ _    |   |   |   |
       |_ _|_ _|_ _|_ _|_  |                             _
  30   |_ _ _ _ _        | |                            | | 30
       |_ _ _ _ _|_      | |                            | |
       |_ _ _      |     | |                            | |
       |_ _ _|_ _ _|_    | |                            | |
       |_ _ _ _      |   | |                            | |
       |_ _ _ _|_    |   | |                            | |
       |_ _ _    |   |   | |                            | |
       |_ _ _|_ _|_ _|_  | |                           _|_|
  22   |_ _ _ _        | | |                          |   |  22
       |_ _ _ _|_      | | |                          |   |
       |_ _ _ _ _|_    | | |                          |   |
       |_ _ _      |   | | |                          |   |
       |_ _ _|_    |   | | |                          |   |
       |_ _    |   |   | | |                          |   |
       |_ _|_ _|_ _|_  | | |                         _|_ _|
  15   |_ _ _ _      | | | |                        | |   |  15
       |_ _ _ _|_    | | | |                        | |   |
       |_ _ _    |   | | | |                        | |   |
       |_ _ _|_ _|_  | | | |                       _|_|_ _|
  11   |_ _ _      | | | | |                      | |     |  11
       |_ _ _|_    | | | | |                      | |     |
       |_ _    |   | | | | |                      | |     |
       |_ _|_ _|_  | | | | |                     _| |_ _ _|
   7   |_ _ _    | | | | | |                    |   |     |   7
       |_ _ _|_  | | | | | |                   _|_ _|_ _ _|
   5   |_ _    | | | | | | |                  | | |       |   5
       |_ _|_  | | | | | | |                 _| | |_ _ _ _|
   3   |_ _  | | | | | | | |               _|_ _|_|_ _ _ _|   3
   2   |_  | | | | | | | | |           _ _|_ _|_|_ _ _ _ _|   2
   1   |_|_|_|_|_|_|_|_|_|_|          |_ _|_|_|_ _ _ _ _ _|   1
.
             Figure 1.                       Figure 2.
         Front view of the                 Lateral view
        prism of partitions.               of the tower.
.
.                                      _ _ _ _ _ _ _ _ _ _
                                      |   | | | | | | | |_|   1
                                      |   | | | | | |_|_ _|   2
                                      |   | | | |_|_  |_ _|   3
                                      |   | |_|_    |_ _ _|   4
                                      |   |_ _  |_  |_ _ _|   5
                                      |_ _    |_  |_ _ _ _|   6
                                          |_    | |_ _ _ _|   7
                                            |_  |_ _ _ _ _|   8
                                              |           |   9
                                              |_ _ _ _ _ _|  10
.
                                             Figure 3.
                                             Top view
                                           of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
		

Crossrefs

Programs

  • Mathematica
    nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
  • PARI
    T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013

Formula

T(n,k) = sigma(k)*p(n-k) = A000203(k)*A027293(n,k).
T(n,k) = A245093(n,k)*A027293(n,k).

A338156 Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2020

Keywords

Comments

In other words: in row n replace every term of n-th row of A176206 with its divisors.
The terms in row n are also all parts of all partitions of n.
As in A336812 here we introduce a new type of table which shows the correspondence between divisors and partitions. More precisely the table shows the correspondence between all divisors of all terms of the n-th row of A176206 and all parts of all partitions of n, with n >= 1. Both the mentionded divisors and the mentioned parts are the same numbers (see Example section). That is because all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
For an equivalent table for all parts of the last section of the set of partitions of n see the subsequence A336812. The section is the smallest substructure of the set of partitions in which appears the correspondence divisor/part.
From Omar E. Pol, Aug 01 2021: (Start)
The terms of row n appears in the triangle A346741 ordered in accordance with the successive sections of the set of partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For the connection with the tower described in A221529 see also A340035. (End)

Examples

			Triangle begins:
  [1];
  [1,2],   [1];
  [1,3],   [1,2],   [1],   [1];
  [1,2,4], [1,3],   [1,2], [1,2], [1],   [1],   [1];
  [1,5],   [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
  ...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
  [1],
  -------
  [1, 2],
  [1],
  -------
  [1, 3],
  [1, 2],
  [1],
  [1];
  ----------
  [1, 2, 4],
  [1, 3],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1];
  ----------
  [1, 5],
  [1, 2, 4],
  [1, 3],
  [1, 3],
  [1, 2],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1],
  [1],
  [1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n |         |  1  |   2   |    3    |      4     |       5       |
|---|---------|-----|-------|---------|------------|---------------|
| P |         |     |       |         |            |               |
| A |         |     |       |         |            |               |
| R |         |     |       |         |            |               |
| T |         |     |       |         |            |  5            |
| I |         |     |       |         |            |  3  2         |
| T |         |     |       |         |  4         |  4  1         |
| I |         |     |       |         |  2  2      |  2  2  1      |
| O |         |     |       |  3      |  3  1      |  3  1  1      |
| N |         |     |  2    |  2 1    |  2  1 1    |  2  1  1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1  1 1 1  |  1  1  1 1 1  |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12  5 2 1  | 20  8  4 2 1  |
|   |         |  |  |  |/|  |  |/|/|  |  |/ |/|/|  |  |/ | /|/|/|  |
| L | A066633 |  1  |  2 1  |  4 1 1  |  7  3 1 1  | 12  4  2 1 1  |
| I |         |  *  |  * *  |  * * *  |  *  * * *  |  *  *  * * *  |
| N | A002260 |  1  |  1 2  |  1 2 3  |  1  2 3 4  |  1  2  3 4 5  |
| K |         |  =  |  = =  |  = = =  |  =  = = =  |  =  =  = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7  6 3 4  | 12  8  6 4 5  |
|   |         |  |  |  |\|  |  |\|\|  |  |\ |\|\|  |  |\ |\ |\|\|  |
|   | A206561 |  1  |  4 2  |  9 5 3  | 20 13 7 4  | 35 23 15 9 5  |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1  2   4  |  1         5  |
|   |---------|-----|-------|---------|------------|---------------|
|   | A027750 |     |  1    |  1 2    |  1    3    |  1  2    4    |
|   |---------|-----|-------|---------|------------|---------------|
| D | A027750 |     |       |  1      |  1  2      |  1     3      |
| I | A027750 |     |       |  1      |  1  2      |  1     3      |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 |     |       |         |  1         |  1  2         |
| S | A027750 |     |       |         |  1         |  1  2         |
| O | A027750 |     |       |         |  1         |  1  2         |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructed using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5]) then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
		

Crossrefs

Nonzero terms of A340031.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812 (a subsequence).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).

Programs

  • Mathematica
    A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m],PartitionsP[m]],{m,0,n-1}]],{n,rowmax}];
    A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
  • PARI
    A338156(rowmax)=vector(rowmax,n,concat(vector(n,m,concat(vector(numbpart(m-1),i,divisors(n-m+1))))));
    A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023

A340035 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(n-m) copies of the divisors of m, with 1 <= m <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 4, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
  1;
  1, 1, 2;
  1, 1, 1, 2, 1, 3;
  1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 4;
  1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 4, 1, 5;
  ...
Written as an irregular tetrahedron the first five slices are:
  1;
  --
  1,
  1, 2;
  -----
  1,
  1,
  1, 2
  1, 3;
  -----
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 3,
  1, 2, 4;
  --------
  1,
  1,
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 2,
  1, 3,
  1, 3,
  1, 2, 4,
  1, 5;
--------
The slices of the tetrahedron appear in the upper zone of the following table (formed by three zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
| D | A027750 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A027750 |     |       |         |  1        |  1 2        |
| I | A027750 |     |       |         |  1        |  1 2        |
| S | A027750 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A027750 |     |       |  1      |  1 2      |  1   3      |
| S | A027750 |     |       |  1      |  1 2      |  1   3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A340032 but here, in the upper zone, every row is A027750 instead of A127093.
Also the above table is the table of A338156 upside down.
The connection with the tower described in A221529 is as follows (n = 7):
|--------|------------------------|
| Level  |                        |
| in the | 7th slice of divisors  |
| tower  |                        |
|--------|------------------------|
|  11    |   1,                   |
|  10    |   1,                   |
|   9    |   1,                   |
|   8    |   1,                   |
|   7    |   1,                   |
|   6    |   1,                   |
|   5    |   1,                   |
|   4    |   1,                   |
|   3    |   1,                   |
|   2    |   1,                   |
|   1    |   1,                   |
|--------|------------------------|
|   7    |   1, 2,                |
|   6    |   1, 2,                |
|   5    |   1, 2,                |
|   4    |   1, 2,                |
|   3    |   1, 2,                |
|   2    |   1, 2,                |
|   1    |   1, 2,                |
|--------|------------------------|
|   5    |   1,    3,             |
|   4    |   1,    3,             |
|   3    |   1,    3,             |
|   2    |   1,    3,             |      Level
|   1    |   1,    3,             |             _
|--------|------------------------|       11   | |
|   3    |   1, 2,    4,          |       10   | |
|   2    |   1, 2,    4,          |        9   | |
|   1    |   1, 2,    4,          |        8   |_|_
|--------|------------------------|        7   |   |
|   2    |   1,          5,       |        6   |_ _|_
|   1    |   1,          5,       |        5   |   | |
|--------|------------------------|        4   |_ _|_|_
|   1    |   1, 2, 3,       6,    |        3   |_ _ _| |_
|--------|------------------------|        2   |_ _ _|_ _|_ _
|   1    |   1,                7; |        1   |_ _ _ _|_|_ _|
|--------|------------------------|
             Figure 1.                            Figure 2.
                                                Lateral view
                                                of the tower.
.
                                                _ _ _ _ _ _ _
                                               |_| | | | |   |
                                               |_ _|_| | |   |
                                               |_ _|  _|_|   |
                                               |_ _ _|    _ _|
                                               |_ _ _|  _|
                                               |       |
                                               |_ _ _ _|
.
                                                  Figure 3.
                                                  Top view
                                                of the tower.
.
Figure 1 shows the terms of the 7th row of the triangle arranged as the 7th slice of the tetrahedron. The left hand column (see figure 1) gives the level of the sum of the divisors in the tower (see figures 2 and 3).
		

Crossrefs

Programs

  • Mathematica
    A340035row[n_]:=Flatten[Array[ConstantArray[Divisors[#],PartitionsP[n-#]]&,n]];
    nrows=7;Array[A340035row,nrows] (* Paolo Xausa, Jun 20 2022 *)

A302246 Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nonincreasing order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2018

Keywords

Comments

Also due to the correspondence divisor/part row n lists the terms of the n-th row of A338156 in nonincreasing order. In other words: row n lists in nonincreasing order the divisors of the terms of the n-th row of A176206. - Omar E. Pol, Jun 16 2022

Examples

			Triangle begins:
  1;
  2,1,1;
  3,2,1,1,1,1;
  4,3,2,2,2,1,1,1,1,1,1,1;
  5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1;
  6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  ...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There is only one 4, only one 3, three 2's and seven 1's, so the 4th row of this triangle is [4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nonincreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
		

Crossrefs

Both column 1 and 2 are A000027.
Row n has length A006128(n).
The sum of row n is A066186(n).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).
First differs from A036037, A080577, A181317, A237982 and A239512 at a(13) = T(4,3).
Cf. A302247 (mirror).

Programs

  • Mathematica
    nrows=10;Array[ReverseSort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
  • PARI
    row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list), , 4); \\ Michel Marcus, Jun 16 2022

A302247 Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nondecreasing order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2018

Keywords

Comments

Also due to the correspondence divisor/part row n lists the terms of the n-th row of A338156 in nondecreasing order. In other words: row n lists in nondecreasing order the divisors of the terms of the n-th row of A176206. - Omar E. Pol, Jun 16 2022

Examples

			Triangle begins:
  1;
  1,1,2;
  1,1,1,1,2,3;
  1,1,1,1,1,1,1,2,2,2,3,4;
  1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6;
  ...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There are seven 1's, three 2's, only one 3 and only one 4, so the 4th row of this triangle is [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4].
On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nondecreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022
		

Crossrefs

Mirror of A302246.
Row n has length A006128(n).
The sum of row n is A066186(n).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).
First differs from both A026791 and A080576 at a(17) = T(4,7).

Programs

  • Mathematica
    nrows=10; Array[Sort[Flatten[IntegerPartitions[#]]]&,nrows] (* Paolo Xausa, Jun 16 2022 *)
  • PARI
    row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list)); \\ Michel Marcus, Jun 16 2022

A221649 Tetrahedron E(n,j,k) = k*T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 2, 0, 4, 5, 3, 6, 2, 0, 6, 1, 2, 0, 4, 1, 0, 0, 0, 5, 7, 5, 10, 3, 0, 9, 2, 4, 0, 8, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 11, 7, 14, 5, 0, 15, 3, 6, 0, 12, 2, 0, 0, 0, 10, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7
Offset: 1

Views

Author

Omar E. Pol, Jan 21 2013

Keywords

Comments

The tetrahedron shows a connection between divisors and partitions.
The sum of all elements of slice n is A066186(n).
The sum of row j of slice n is A221529(n,j).
The sum of column k of slice n is A138785(n,k), the sum of all parts of size k in all partitions of n.
See also the tetrahedron of A221650.

Examples

			First five slices of tetrahedron are
---------------------------------------------------
n  j / k   1  2  3  4  5  6      A221529   A066186
---------------------------------------------------
1  1       1,                       1         1
...................................................
2  1       1,                       1
2  2       1, 2,                    3         4
...................................................
3  1       2,                       2
3  2       1, 2,                    3
3  3       1, 0, 3,                 4         9
...................................................
4  1       3,                       3
4  2       2, 4,                    6
4  3       1, 0, 3,                 4
4  4       1, 2, 0, 4,              7        20
...................................................
5  1       5,                       5
5  2       3, 6,                    9
5, 3,      2, 0, 6,                 8
5, 4,      1, 2, 0, 4,              7
5, 5,      1, 0, 0, 0, 5,           6        35
...................................................
.
From _Omar E. Pol_, Jul 26 2021: (Start)
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   |    -    |     |       |         |           |  5          |
| C |    -    |     |       |         |  3        |  3 6        |
| O |    -    |     |       |  2      |  2 4      |  2 0 6      |
| N | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
| D | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
| D | A127093 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A127093 |     |       |         |  1        |  1 2        |
| I | A127093 |     |       |         |  1        |  1 2        |
| S | A127093 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| S | A127093 |     |       |  1      |  1 2      |  1 0 3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340011 upside down.
For more information about the correspondence divisor/part see A338156. (End)
		

Crossrefs

Programs

  • Mathematica
    A221649row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j]k,0],{j,n},{k,j}]];Array[A221649row,10] (* Paolo Xausa, Sep 26 2023 *)

Formula

E(n,j,k) = k*A051731(j,k)*A000041(n-j) = A127093(j,k)*A000041(n-j) = k*A221650(n,j,k).

Extensions

a(18)-a(19) and a(28)-a(29) corrected by Paolo Xausa, Sep 26 2023
Showing 1-10 of 26 results. Next