cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139101 Numbers that show the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

1, 10, 1001, 100101, 1001010111, 100101011101, 1001010111010111, 100101011101011101, 1001010111010111010111, 1001010111010111010111011111, 100101011101011101011101111101, 100101011101011101011101111101011111, 1001010111010111010111011111010111110111
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008

Keywords

Comments

a(n) has A000040(n)-1 digits, n-1 digits "0" and A000040(n)-n digits "1".

Crossrefs

Binary representation of A139102.
Subset of A118256.

Programs

  • Mathematica
    Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2;
    If[! PrimeQ[i], sum++]]; IntegerString[sum, 2], {n, 1, 13}] (* Robert Price, Apr 03 2019 *)
  • PARI
    a(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 10); \\ Michel Marcus, Apr 04 2019
    
  • Python
    from sympy import isprime, prime
    def a(n): return int("".join(str(1-isprime(i)) for i in range(1, prime(n))))
    print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Jan 10 2022
    
  • Python
    # faster version for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an = 0
        for k in count(1):
            an = 10 * an + int(not isprime(k))
            if isprime(k+1):
                yield an
    print(list(islice(agen(), 13))) # Michael S. Branicky, Jan 10 2022