cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139140 For n>=1, a(n) = d(prime(n)+1) + d(prime(n)+2) + d(prime(n)+3) + ... + d(prime(n+1)), where d(m) is the number of positive divisors of m and prime(n) is the n-th prime. a(0) = d(1) + d(2).

Original entry on oeis.org

3, 2, 5, 6, 13, 8, 15, 8, 16, 27, 10, 29, 18, 10, 18, 31, 30, 14, 31, 20, 14, 30, 21, 34, 48, 23, 10, 22, 14, 24, 83, 22, 38, 10, 61, 14, 40, 36, 20, 41, 34, 20, 60, 16, 23, 14, 82, 72, 27, 14, 26, 36, 22, 58, 45, 36, 40, 18, 42, 28, 10, 67, 98, 26, 18, 24, 101, 42, 64, 14, 34
Offset: 0

Views

Author

Leroy Quet, Apr 10 2008

Keywords

Examples

			The 9th prime is 23 and the 10th prime is 29. So a(9) = d(24) + d(25) + d(26) + d(27) + d(28) + d(29) = 8 + 3 + 4 + 4 + 6 + 2 = 27.
		

Crossrefs

Cf. A139141.

Programs

  • Maple
    A000005 := proc(n) numtheory[tau](n) ; end: A006218 := proc(n) local k ; add(A000005(k),k=1..n) ; end: A139140 := proc(n) if n = 0 then RETURN(3) ; else A006218( ithprime(n+1))-A006218(ithprime(n)) ; fi ; end: seq(A139140(n),n=0..100) ; # R. J. Mathar, Apr 16 2008
  • Mathematica
    nn=80;Join[{3},With[{nds=Table[DivisorSigma[0,n],{n,Prime[nn+1]}]}, Table[ Total[Take[nds,{Prime[n]+1,Prime[n+1]}]],{n,nn}]]] (* Harvey P. Dale, May 07 2012 *)
  • Python
    from sympy import divisor_count, prime
    def A139140(n): return sum(divisor_count(k) for k in range(prime(n)+1,prime(n+1)+1)) if n else 3 # Chai Wah Wu, Oct 23 2023

Formula

For n>=1, a(n) = Sum_{k=1..prime(n+1)} (floor(prime(n+1)/k) - floor(prime(n)/k)), where p(n) is the n-th prime.
a(n) = A006218(A000040(n+1)) - A006218(A000040(n)), n>0. - R. J. Mathar, Apr 16 2008

Extensions

More terms from R. J. Mathar, Apr 16 2008