A139158 Triangle a(n,k) of the expansion coefficients of the Hermite polynomial 2*H(n/2,x) if n even, of H((n-1)/2,x)+H((n+1)/2,x) if n odd.
2, 1, 2, 0, 4, -2, 2, 4, -4, 0, 8, -2, -12, 4, 8, 0, -24, 0, 16, 12, -12, -48, 8, 16, 24, 0, -96, 0, 32, 12, 120, -48, -160, 16, 32, 0, 240, 0, -320, 0, 64, -120, 120, 720, -160, -480, 32, 64, -240, 0, 1440, 0, -960, 0, 128, -120, -1680, 720, 3360, -480, -1344, 64, 128, 0, -3360, 0, 6720, 0, -2688
Offset: 0
Examples
{2}, = 2 {1, 2}, = 1+2x {0, 4}, = 4x^2 {-2, 2, 4}, = -2+2x+4x^2 {-4, 0, 8}, = -4+8x^2 {-2, -12, 4, 8}, {0, -24, 0, 16}, {12, -12, -48, 8, 16}, {24, 0, -96, 0, 32}, {12, 120, -48, -160, 16, 32}, {0, 240, 0, -320, 0, 64}.
Crossrefs
Cf. A060821.
Programs
-
Maple
A060821 := proc(n,k) orthopoly[H](n,x) ; coeftayl(%,x=0,k) ; end: A139158 := proc(n,k) if type(n,'even') then 2*A060821(n/2,k) ; else A060821((n+1)/2-1,k)+A060821((n+1)/2,k) ; fi; end: seq( seq(A139158(n,k),k=0..(n+1)/2),n=0..15) ;
-
Mathematica
Clear[p, x] p[x, 0] = 2*HermiteH[0, x]; p[x, 1] = HermiteH[0, x] + HermiteH[1, x]; p[x, 2] = 2*HermiteH[1, x]; p[x_, m_] := p[x, m] = If[Mod[m, 2] == 0, 2*HermiteH[Floor[m/2], x], HermiteH[ Floor[m/2], x] + HermiteH[Floor[m/ 2 + 1], x]]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]
Formula
Extensions
Edited by the Associate Editors of the OEIS, Aug 28 2009
Comments