A139213 Expansion of phi(q) * phi(-q^18) / (phi(-q^3) * phi(-q^6)) in powers of q where phi() is a Ramanujan theta function.
1, 2, 0, 2, 6, 0, 6, 16, 0, 14, 36, 0, 30, 76, 0, 60, 150, 0, 114, 280, 0, 208, 504, 0, 366, 878, 0, 626, 1488, 0, 1044, 2464, 0, 1704, 3996, 0, 2730, 6364, 0, 4300, 9972, 0, 6672, 15400, 0, 10212, 23472, 0, 15438, 35346, 0, 23076, 52644, 0, 34134, 77616, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 2*q^3 + 6*q^4 + 6*q^6 + 16*q^7 + 14*q^9 + 36*q^10 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^18] / (EllipticTheta[ 4, 0, q^3] EllipticTheta[ 4, 0, q^6]), {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^12 + A) * eta(x^18 + A)^2 / (eta(x + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^36 + A)), n))};
Formula
Expansion of eta(q^2)^5 * eta(q^12) * eta(q^18)^2 / (eta(q)^2 * eta(q^3)^2 * eta(q^4)^2 * eta(q^6) * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [ 2, -3, 4, -1, 2, 0, 2, -1, 4, -3, 2, 1, 2, -3, 4, -1, 2, -2, 2, -1, 4, -3, 2, 1, 2, -3, 4, -1, 2, 0, 2, -1, 4, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139215.
a(n) = 2 * A139214(n) unless n=0. a(3*n + 2) = 0.
Comments