cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A139258 Palindromes formed from the reflected decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma.

Original entry on oeis.org

5, 55, 575, 5775, 57775, 577775, 5772775, 57722775, 577212775, 5772112775, 57721512775, 577215512775, 5772156512775, 57721566512775, 577215666512775, 5772156666512775, 57721566466512775, 577215664466512775
Offset: 1

Views

Author

Omar E. Pol, May 01 2008

Keywords

Examples

			n ... Successive digits of a(n)
1 ............ ( 5 )
2 ......... . ( 5 5 )
3 .......... ( 5 7 5 )
4 ......... ( 5 7 7 5 )
5 ........ ( 5 7 7 7 5 )
6 ....... ( 5 7 7 7 7 5 )
7 ...... ( 5 7 7 2 7 7 5 )
8 ..... ( 5 7 7 2 2 7 7 5 )
9 .... ( 5 7 7 2 1 2 7 7 5 )
10 .. ( 5 7 7 2 1 1 2 7 7 5 )
		

Crossrefs

Decimal expansion of gamma: A001620. Cf. A135634, A135697, A135700, A139259, A139260, A139261.

Programs

  • Mathematica
    a[n_]:=FromDigits[Join[RealDigits[EulerGamma,10,Ceiling[n/2]][[1]],Reverse[RealDigits[EulerGamma,10,Floor[n/2]][[1]]]]];Array[a,18] (* James C. McMahon, Jun 29 2025 *)

A139259 Triangle read by rows: row n lists the digits of A139258(n), the palindromic number formed from the reflected decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma.

Original entry on oeis.org

5, 5, 5, 5, 7, 5, 5, 7, 7, 5, 5, 7, 7, 7, 5, 5, 7, 7, 7, 7, 5, 5, 7, 7, 2, 7, 7, 5, 5, 7, 7, 2, 2, 7, 7, 5, 5, 7, 7, 2, 1, 2, 7, 7, 5, 5, 7, 7, 2, 1, 1, 2, 7, 7, 5, 5, 7, 7, 2, 1, 5, 1, 2, 7, 7, 5, 5, 7, 7, 2, 1, 5, 5, 1, 2, 7, 7, 5
Offset: 1

Views

Author

Omar E. Pol, May 01 2008

Keywords

Comments

Also, successive digits of A139258.

Examples

			Triangle begins:
....... 5
...... 5,5
..... 5,7,5
.... 5,7,7,5
... 5,7,7,7,5
		

Crossrefs

Decimal expansion of gamma: A001620.

Programs

  • Mathematica
    a[n_]:=FromDigits[Join[RealDigits[EulerGamma,10,Ceiling[n/2]][[1]],Reverse[RealDigits[EulerGamma,10,Floor[n/2]][[1]]]]];IntegerDigits/@Array[a,12]//Flatten (* James C. McMahon, Jun 29 2025 *)

A139261 Triangle read by rows: row n lists the first n digits of the decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma.

Original entry on oeis.org

5, 5, 7, 5, 7, 7, 5, 7, 7, 2, 5, 7, 7, 2, 1, 5, 7, 7, 2, 1, 5, 5, 7, 7, 2, 1, 5, 6, 5, 7, 7, 2, 1, 5, 6, 6, 5, 7, 7, 2, 1, 5, 6, 6, 4, 5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1
Offset: 1

Views

Author

Omar E. Pol, May 01 2008

Keywords

Comments

Also, successive digits of A139260.

Examples

			Triangle begins:
....... 5
...... 5,7
..... 5,7,7
.... 5,7,7,2
... 5,7,7,2,1
		

Crossrefs

Decimal expansion of gamma: A001620.

Programs

  • Mathematica
    a[n_]:=FromDigits[RealDigits[EulerGamma,10,n][[1]]];IntegerDigits/@Array[a,12]//Flatten (* James C. McMahon, Jun 29 2025 *)

A175835 Number of real roots of the polynomial Sum_{k=0..n-1} A001620(1+k-n)*x^k, whose coefficients are the decimal digits of the Euler-Mascheroni constant.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 0, 3, 0, 3, 4, 1, 4, 1, 0, 1
Offset: 1

Views

Author

Michel Lagneau, Dec 05 2010

Keywords

Comments

a(n) = number of real zeros of the polynomial P(n,x) = Sum_{k=0..n-1} g(k) x^k, where g(k) are the digits of the decimal expansion of floor(gamma*10^n), g(k)=A001620(k-n).

Examples

			a(4)=1 because 5772 = A139260(4) => P(4,x) = 2 + 7x + 7x^2 +  5x^3 has 1 real root near -0.4.
		

Crossrefs

Programs

  • Maple
    A139260 := proc(n) floor(gamma*10^n) ;end proc:
    A175835 := proc(n) local edgs ; edgs := convert(A139260(n),base,10) ; add(op(i,edgs)*x^(i-1),i=1..nops(edgs)) ; [fsolve(%,x,real)] ; nops(%) ; end proc:
    seq(A175835(n),n=1..20) ; # R. J. Mathar, Dec 11 2010
Showing 1-4 of 4 results.