cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139309 Array by antidiagonals, sum of non-k-gonal numbers between consecutive k-gonal numbers.

Original entry on oeis.org

0, 0, 2, 0, 5, 9, 0, 9, 26, 24, 0, 14, 51, 75, 50, 0, 20, 84, 153, 164, 90, 0, 27, 125, 258, 342, 305, 147, 0, 35, 174, 390, 584, 645, 510, 224, 0, 44, 231, 549, 890, 1110, 1089, 791, 324, 0, 54, 296, 735, 1260, 1700, 1884, 1701, 1160, 450, 0, 65, 369, 948, 1694
Offset: 0

Views

Author

Jonathan Vos Post, Jun 07 2008

Keywords

Comments

The n=1 column is A000096(k) = n*(n+3)/2. The k=3 row is the sum of nontriangular numbers between successive triangular numbers (A006002) = the sum of n consecutive integers beginning with (n-th triangular number)+1 = (n*(n+1)^2)/2. The k=4 row is the sum of nonsquares between successive squares (A048395) = 2*n^3 + 2*n^2 + n. The k=5 row is the sum of non-pentagonal numbers between successive pentagonal numbers. The k-th row is the sum of non-k-gonal numbers between successive k-gonal numbers. Each column is a quadratic sequence. Each row is a cubic sequence.

Examples

			The array begins:
========================================================================
...|.n=0.|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|.n=9.|.in.OEIS
====|=====|=====|=====|=====|=====|=====|=====|=====|=====|=====|========
k=3.|..0..|..2..|..9..|..24.|..50.|..90.|.147.|.224.|.324.|.450.|.A006002
k=4.|..0..|..5..|.26..|..75.|.164.|.305.|.510.|.791.|1160.|1629.|.A048395
k=5.|..0..|..9..|.51..|.153.|.342.|.645.|1089.|...................not.yet
k=6.|..0..|.14..|.84..|.258.|.584.|...............................not.yet
k=7.|..0..|.20..|125..|.390.|.....................................not.yet
k=8.|..0..|.27..|174..|...........................................not.yet
k=9.|..0..|.35..|231..|...........................................not.yet
k=10|..0..|.44..|296..|...........................................not.yet
========================================================================
		

Crossrefs

Programs

  • Maple
    A139309 := proc(k,n) n*(k-2)*((k-2)*n^2+1+2*n)/2 ; end: for d from 3 to 16 do for n from 0 to d-3 do printf("%d,", A139309(d-n,n)) ; od: od: # R. J. Mathar, Jun 12 2008

Formula

T(k,n) = n(k-2)((k-2)n^2+1+2n)/2. - R. J. Mathar, Jun 12 2008

Extensions

More terms from R. J. Mathar, Jun 12 2008