A139351 Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence gives e(n).
0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 1
Offset: 0
Examples
For n = 43 = 2^0 + 2^1 + 2^3 + 2^5, e(43)=1, o(43)=3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Franklin T. Adams-Watters and Frank Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009), Article 09.5.6.
- N. J. A. Sloane, Fortran program for this and related sequences.
Crossrefs
Programs
-
Fortran
See Sloane link.
-
Haskell
import Data.List (unfoldr) a139351 = sum . map (`mod` 2) . unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) -- Reinhard Zumkeller, Apr 22 2011
-
Maple
A139351 := proc(n) local a,bdgs,r; a := 0 ; bdgs := convert(n,base,2) ; for r from 1 to nops(bdgs) by 2 do if op(r,bdgs) = 1 then a := a+1 ; end if; end do: a; end proc: # R. J. Mathar, Jul 21 2016
-
Mathematica
terms = 99; s = (1/(1-z))*Sum[z^(4^m)/(1+z^(4^m)), {m, 0, Log[4, terms] // Ceiling}] + O[z]^terms; CoefficientList[s, z] (* Jean-François Alcover, Jul 21 2017 *) a[0] = 0; a[n_] := a[n] = a[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; Array[a, 100, 0] (* Amiram Eldar, Jul 18 2023 *)
-
PARI
a(n)=if(n>3,a(n\4))+n%2 \\ Charles R Greathouse IV, Apr 21 2016
Formula
G.f.: (1/(1-z))*Sum_{m>=0} (z^(4^m)/(1+z^(4^m))). - Frank Ruskey, May 03 2009
Recurrence relation: a(0)=0, a(4m) = a(4m+2) = a(m), a(4m+1) = a(4m+3) = 1+a(m). - Frank Ruskey, May 11 2009
Extensions
Typo in example fixed by Reinhard Zumkeller, Apr 22 2011
Comments