cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139352 Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence gives o(n).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2
Offset: 0

Views

Author

Nadia Heninger and N. J. A. Sloane, Jun 07 2008

Keywords

Comments

e(n) + o(n) = A000120(n), the binary weight of n.
a(n) is also the number of 2's and 3's in the 4-ary representation of n. - Frank Ruskey, May 02 2009

Examples

			For n = 43 = 2^0 + 2^1 + 2^3 + 2^5, e(43)=1, o(43)=3. [Typo fixed by _Reinhard Zumkeller_, Apr 22 2011]
		

Crossrefs

Programs

  • Fortran
    c See link in A139351
    
  • Haskell
    import Data.List (unfoldr)
    a139352 = sum . map ((`div` 2) . (`mod` 4)) .
       unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4))
    -- Reinhard Zumkeller, Apr 22 2011
    
  • Maple
    A139352 := proc(n)
        local a,bdgs,r;
        a := 0 ;
        bdgs := convert(n,base,2) ;
        for r from 2 to nops(bdgs) by 2 do
            if op(r,bdgs) = 1 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Jul 21 2016
  • Mathematica
    a[n_] := Count[Position[Reverse@IntegerDigits[n, 2], 1]-1, {_?OddQ}];
    Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Mar 04 2023 *)
    a[0] = 0; a[n_] := a[n] = a[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; Array[a, 100, 0] (* Amiram Eldar, Jul 18 2023 *)
  • PARI
    a(n)=if(n>3,a(n\4))+n%4\2 \\ Charles R Greathouse IV, Apr 21 2016

Formula

G.f.: (1/(1-z))*Sum_{m>=0} (z^(2*4^m)/(1+(2*4^m))). - Frank Ruskey, May 03 2009
Recurrence relation: a(0)=0, a(4m) = a(4m+1) = a(m), a(4m+2) = a(4m+3) = 1+a(m). - Frank Ruskey, May 11 2009
a(n) = Sum_{k} A030308(n,k)*A000035(k). - Philippe Deléham, Oct 14 2011