A139590 Fibonacci numbers with a non-Fibonacci number of divisors.
8, 21, 34, 55, 144, 377, 2584, 4181, 6765, 17711, 46368, 75025, 121393, 196418, 317811, 832040, 1346269, 2178309, 5702887, 14930352, 102334155, 165580141, 267914296, 701408733, 1134903170, 4807526976, 12586269025, 32951280099
Offset: 1
Keywords
Examples
34 belongs to the sequence because the number of its divisors, 4, is not a Fibonacci number.
Programs
-
Maple
A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2),x=0,n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139590 := proc(n) RETURN(isA000045(n) and not isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139590(a000045) then printf("%d,",a000045) ; fi ; od: # R. J. Mathar, May 11 2008 with(combinat): with(numtheory): F:={seq(fibonacci(j),j=1..30)}: a:= proc(n) if member(tau(fibonacci(n)),F) = false then fibonacci(n) else end if end proc: seq(a(n),n=1..50); # Emeric Deutsch
-
Mathematica
With[{fibs=Fibonacci[Range[60]]},Transpose[Select[Thread[{fibs, DivisorSigma[ 0,fibs]}], !MemberQ[ fibs,#[[2]]]&]][[1]]] (* Harvey P. Dale, Aug 04 2013 *)
Extensions
More terms from R. J. Mathar and Emeric Deutsch, May 11 2008
Comments