cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139594 Number of different n X n symmetric matrices with nonnegative entries summing to 4. Also number of symmetric oriented graphs with 4 arcs on n points.

Original entry on oeis.org

0, 1, 9, 39, 116, 275, 561, 1029, 1744, 2781, 4225, 6171, 8724, 11999, 16121, 21225, 27456, 34969, 43929, 54511, 66900, 81291, 97889, 116909, 138576, 163125, 190801, 221859, 256564, 295191, 338025, 385361, 437504, 494769, 557481, 625975, 700596
Offset: 0

Views

Author

Marc A. A. van Leeuwen, Jun 12 2008

Keywords

Comments

a(n) is also the number of semistandard Young tableaux over all partitions of 4 with maximal element <= n. - Alois P. Heinz, Mar 22 2012
Starting from 1 the partial sums give A244864. - J. M. Bergot, Sep 17 2016

Examples

			From _Michael B. Porter_, Sep 18 2016: (Start)
The nine 2 X 2 matrices summing to 4 are:
4 0  3 0  2 0  1 0  0 0  2 1  1 1  0 1  0 2
0 0  0 1  0 2  0 3  0 4  1 0  1 1  1 2  2 0
(End)
		

Crossrefs

For 3 in place of 4 this gives A005900.
Row n=4 of A210391. - Alois P. Heinz, Mar 22 2012
Partial sums of A063489.

Programs

  • Maple
    dd := proc(n,m) coeftayl(1/((1-X)^m*(1-X^2)^binomial(m,2)),X=0,n); seq(dd(4,m),m=0..N);
  • Mathematica
    gf[k_] := 1/((1-x)^k (1-x^2)^(k(k-1)/2));
    T[n_, k_] := SeriesCoefficient[gf[k], {x, 0, n}];
    a[k_] := T[4, k];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 07 2020 *)

Formula

a(n) = coefficient of x^4 in 1/((1-x)^n * (1-x^2)^binomial(n,2)).
a(n) = (n^2*(7+5*n^2))/12. G.f.: x*(1+x)*(1+3*x+x^2)/(1-x)^5. [Colin Barker, Mar 18 2012]