cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139678 Number of n X n symmetric binary matrices with no row sum greater than 2.

Original entry on oeis.org

1, 2, 8, 45, 315, 2634, 25518, 280257, 3434595, 46400310, 684374076, 10933866027, 187983528813, 3458845917990, 67787903801790, 1409293876400019, 30968525550983913, 717023025711440082, 17442766619178969600, 444704318660973471885, 11855331996299677291131
Offset: 0

Views

Author

R. H. Hardin, Jun 13 2008

Keywords

Crossrefs

Column k=2 of A334548.

Programs

  • Maple
    n:=18: G:=taylor((1/sqrt(1-x))*exp((6*x + x^2 + x^3)/(4 - 4*x)),x=0,n+1): seq(coeff(G,x,m)*m!,m=0..n); # Nathaniel Johnston, Apr 19 2011
  • PARI
    seq(n) = {Vec(serlaplace(exp( (6*x + x^2 + x^3)/(4*(1 - x)) + O(x*x^n) ) / sqrt(1 - x + O(x*x^n))))} \\ Andrew Howroyd, May 08 2020

Formula

E.g.f.: exp( (6*x + x^2 + x^3)/(4*(1 - x)) ) / sqrt(1 - x). - Joel B. Lewis, Apr 17 2011, corrected by Vaclav Kotesovec, Aug 13 2013
a(n) ~ n^n*exp(2*sqrt(2*n)-n-7/4)/sqrt(2) * (1+17/(6*sqrt(2*n))). - Vaclav Kotesovec, Aug 13 2013
Recurrence: 2*a(n) = 4*n*a(n-1) - 2*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 13 2013

Extensions

a(19)-a(20) added from b-file by Andrew Howroyd, May 08 2020