A139678 Number of n X n symmetric binary matrices with no row sum greater than 2.
1, 2, 8, 45, 315, 2634, 25518, 280257, 3434595, 46400310, 684374076, 10933866027, 187983528813, 3458845917990, 67787903801790, 1409293876400019, 30968525550983913, 717023025711440082, 17442766619178969600, 444704318660973471885, 11855331996299677291131
Offset: 0
Keywords
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..200
- Art of Problem Solving forum, A recursive formula please
Crossrefs
Column k=2 of A334548.
Programs
-
Maple
n:=18: G:=taylor((1/sqrt(1-x))*exp((6*x + x^2 + x^3)/(4 - 4*x)),x=0,n+1): seq(coeff(G,x,m)*m!,m=0..n); # Nathaniel Johnston, Apr 19 2011
-
PARI
seq(n) = {Vec(serlaplace(exp( (6*x + x^2 + x^3)/(4*(1 - x)) + O(x*x^n) ) / sqrt(1 - x + O(x*x^n))))} \\ Andrew Howroyd, May 08 2020
Formula
E.g.f.: exp( (6*x + x^2 + x^3)/(4*(1 - x)) ) / sqrt(1 - x). - Joel B. Lewis, Apr 17 2011, corrected by Vaclav Kotesovec, Aug 13 2013
a(n) ~ n^n*exp(2*sqrt(2*n)-n-7/4)/sqrt(2) * (1+17/(6*sqrt(2*n))). - Vaclav Kotesovec, Aug 13 2013
Recurrence: 2*a(n) = 4*n*a(n-1) - 2*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 13 2013
Extensions
a(19)-a(20) added from b-file by Andrew Howroyd, May 08 2020