A139805 A number n is included if (product{k|n, k<=sqrt(n)} k) (= A072499(n)) does not divide n.
20, 28, 36, 42, 44, 48, 52, 54, 60, 66, 68, 72, 76, 78, 80, 84, 88, 90, 92, 96, 99, 100, 102, 104, 108, 110, 112, 114, 116, 117, 120, 124, 126, 130, 132, 136, 138, 140, 144, 148, 150, 152, 153, 156, 160, 162, 164, 168, 170, 171, 172, 174, 176, 180, 184, 186, 188
Offset: 1
Keywords
Examples
The divisors of 42 that are each <= sqrt(42) are 1,2,3,6. The product of these is 36. 36 does not divide 42, so 42 is in the sequence.
Crossrefs
Cf. A072499.
Programs
-
Maple
A072499 := proc(n) local a,k ; a := 1 ; for k in numtheory[divisors](n) do if k^2 <= n then a := a*k ; fi ; od: a ; end: isA139805 := proc(n) RETURN( n mod A072499(n) <> 0 ) end: for n from 1 to 300 do if isA139805(n) then printf("%d,",n) ; fi ; od: # R. J. Mathar, May 24 2008
-
Mathematica
a = {}; For[n = 1, n < 200, n++, If[Mod[n,Times @@ (Select[Divisors[n], ! # > Sqrt[n] &])] > 0, AppendTo[a, n]]]; a (* Stefan Steinerberger *)
Extensions
More terms from R. J. Mathar and Stefan Steinerberger, May 24 2008