A139821 Triangle T(i,j) read by rows: T(i,1) = Fibonacci(i) for all i; T(i,i) = i for all i; T(i,j) = T(i-1,j) + T(i-2,j) + T(i-1,j-1) - T(i-2,j-1).
1, 1, 2, 2, 2, 3, 3, 5, 3, 4, 5, 8, 9, 4, 5, 8, 15, 15, 14, 5, 6, 13, 26, 31, 24, 20, 6, 7, 21, 46, 57, 54, 35, 27, 7, 8, 34, 80, 108, 104, 85, 48, 35, 8, 9, 55, 139, 199, 209, 170, 125, 63, 44, 9, 10, 89, 240, 366, 404, 360, 258, 175, 80, 54, 10, 11
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 2; 2, 2, 3; 3, 5, 3, 4; 5, 8, 9, 4, 5; 8, 15, 15, 14, 5, 6; 13, 26, 31, 24, 20, 6, 7; 21, 46, 57, 54, 5, 27, 7, 8; ...
Links
- Jyoti P. Shiwalker and M. N. Despande, Problem B-1033, Fibonacci Quarterly, Vol. 45, Number 2; 2007; p. 181.
- Russ Euler and Jawad Sadek, editors, Elementary Problems and Solutions, Fibonacci Quarterly, Vol. 45, Number 4; 2007; p. 181.
Programs
-
PARI
t(i, j) = {if ((i <= 0) || (j <= 0), 0, if (j == 1, fibonacci(i), if (i == j, i, t(i-1,j) + t(i-2,j) + t(i-1,j-1) - t(i-2,j-1););););} tabl(nn) = {for (n=1, nn, for (k=1, n, print1(t(n, k), ", ");););} \\ Michel Marcus, Feb 11 2014
Extensions
More terms from Michel Marcus, Feb 11 2014
Comments