A140047 Triangle, read by rows: T(n,k) = (1/2)*Sum_{j=0..2^n-1} j^k for k=0..n-1, n>=1; related to the Prouhet-Tarry-Escott problem.
1, 2, 3, 4, 14, 70, 8, 60, 620, 7200, 16, 248, 5208, 123008, 3098760, 32, 1008, 42672, 2032128, 103223568, 5461682688, 64, 4064, 345440, 33032192, 3369214496, 357969864704, 39119789090720, 128, 16320, 2779840, 532684800, 108880217152
Offset: 1
Examples
Triangle begins: 1; 2, 3; 4, 14, 70; 8, 60, 620, 7200; 16, 248, 5208, 123008, 3098760; 32, 1008, 42672, 2032128, 103223568, 5461682688; 64, 4064, 345440, 33032192, 3369214496, 357969864704, 39119789090720; ... For n=3, since A010060(k) = 0 at k={0,3,5,6}, then T(3,k) = 0^k + 3^k + 5^k + 6^k for k=0..2; and since A010060(k) = 1 at k={1,2,4,7}, we also have T(3,k) = 1^k + 2^k + 4^k + 7^k for k=0..2. For n=4, since A010060(k) = 0 at k={0,3,5,6,9,10,12,15}, then T(4,k) = 0^k + 3^k + 5^k + 6^k + 9^k + 10^k + 12^k + 15^k for k=0..3; and since A010060(k) = 1 at k={1,2,4,7,8,11,13,14}, we also have T(4,k) = 1^k + 2^k + 4^k + 7^k + 8^k + 11^k + 13^k + 14^k for k=0..3.
Programs
-
PARI
{T(n,k)=(1/2)*sum(j=0,2^n-1,j^k)}
-
PARI
{T(n,k)=local(Tnk=0);for(j=0,2^n-1,if(subst(Pol(binary(j)),x,1)%2==0,Tnk+=j^k));Tnk}