A140098 A Beatty sequence: a(n) = [n*(1+1/t)], where t = tribonacci constant (A058265); complement of A140099.
1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 106
Offset: 1
Keywords
Examples
Tribonacci constant: t = 1.839286755214161132551852564653286600... 1 + 1/t = 1.54368901269207636157085597180174798652520...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences.
Programs
-
Mathematica
Floor[Range[100]*(1 + 1/Root[#^3-#^2-#-1 &, 1])] (* Paolo Xausa, Jul 09 2024 *)
-
PARI
{a(n)=local(t=(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3);floor(n*(1+1/t))}