A140122 Negative of numerator of Sum_{k=1..n} (-1)^k / semiprime(k).
1, 1, 7, 17, 209, 25, 37, 281, 9797, 92711, 120011, 1589737, 2027317, 30861373, 38322673, 735926129, 6107595203, 5188977503, 6040786643, 5218865543, 174771852097, 4738609625857, 5386574286277, 4776172794577, 197777244862999
Offset: 1
Examples
The first 10 values of a(n)/A140123(n) = -1/4, -1/12, -7/36, -17/180, -209/1260, -25/252, -37/252, -281/2772, -9797/69300, -92711/900900. The 10th term of the sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26) = -92711/900900 hence a(10) = -(-92711) = 92711. The 20th term of the alternating sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26)-(1/33)+(1/34)-(1/35)+(1/38)-(1/39)+(1/46)-(1/49)+(1/51)-(1/55)+(1/57) = -5218865543/46849502700, hence a(20) = 5218865543.
Programs
Extensions
Corrected and extended by R. J. Mathar, May 13 2008