A140130 a(n) = denominator(c(n)) where c(n) = 1 if n=1, otherwise if n < 3*2^floor(log_2(n)-1) then c(n) = (c(floor(n/2))+c(floor((n+1)/2)))/2 otherwise c(n) = c(n-2^floor(log_2(n)))+1.
1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 4, 1, 2, 1, 1, 1, 8, 4, 8, 2, 8, 4, 8, 1, 4, 2, 4, 1, 2, 1, 1, 1, 16, 8, 16, 4, 16, 8, 16, 2, 16, 8, 16, 4, 16, 8, 16, 1, 8, 4, 8, 2, 8, 4, 8, 1, 4, 2, 4, 1, 2, 1, 1, 1, 32, 16, 32, 8, 32, 16, 32, 4, 32, 16, 32, 8, 32, 16, 32, 2, 32, 16, 32, 8, 32, 16, 32, 4, 32, 16
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..8191
Crossrefs
Cf. A140129 (numerators).
Formula
a(n) = if n=1 then 1 else if n < 3*2^floor(log_2(n)-1) then (if n mod 2 = 0 then a(n/2) else 2^floor(log_2(n)-1)) else a(n-floor(log_2(n))).
For n>1: a(A023758(n)) = 1.
Comments