cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140136 Numerator coefficients for generators of lattice path enumeration square array A111910.

Original entry on oeis.org

1, 1, 1, 1, 7, 7, 1, 1, 20, 75, 75, 20, 1, 1, 42, 364, 1001, 1001, 364, 42, 1, 1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1, 1, 121, 3223, 30723, 127908, 255816, 255816, 127908, 30723, 3223, 121, 1, 1, 182, 7371, 109538, 737737, 2510508
Offset: 0

Views

Author

Paul Barry, May 09 2008

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  7,    7,     1;
  1, 20,   75,    75,    20,     1;
  1, 42,  364,  1001,  1001,   364,   42,    1;
  1, 75, 1212,  6720, 15288, 15288, 6720, 1212, 75, 1;
  ...
		

Crossrefs

Row sums are A006335.
Cf. A111910.

Programs

  • Mathematica
    T[n_, k_] := ((k + n - 1)! (2 (k + n) - 3)! HypergeometricPFQ[{2 - 3 k, 1/2 - n, 1 - n, -n}, {1 - k - n, 3/2 - k - n, 2 - k - n}, 1])/(k! (2 k - 1)! n! (2 n - 1)!);
    Join[{{1}}, Table[T[n, k], {k, 2, 8}, {n, 1, 2 k - 2}]] // Flatten (* Peter Luschny, Sep 04 2019 *)

Formula

(Sum_{k=0..n} T(n,k) * x^k) / (1-x)^(3*n+1) generates row n of A111910.
Triangle T(q,n), where T(n,q) = Sum_{j = 0..n} (-1)^j*C(3*q+1,j)*K(n-j,q) with K(p,q) = A111910(p,q).