A140136 Numerator coefficients for generators of lattice path enumeration square array A111910.
1, 1, 1, 1, 7, 7, 1, 1, 20, 75, 75, 20, 1, 1, 42, 364, 1001, 1001, 364, 42, 1, 1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1, 1, 121, 3223, 30723, 127908, 255816, 255816, 127908, 30723, 3223, 121, 1, 1, 182, 7371, 109538, 737737, 2510508
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 7, 7, 1; 1, 20, 75, 75, 20, 1; 1, 42, 364, 1001, 1001, 364, 42, 1; 1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10100 (rows 0..100, flattened)
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du B.U.R.O. 6 (1965), 9-107; see p. 93.
- G. Kreweras and H. Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin. 2 (1981), 55-60; see p. 60.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 8.
Programs
-
Mathematica
T[n_, k_] := ((k + n - 1)! (2 (k + n) - 3)! HypergeometricPFQ[{2 - 3 k, 1/2 - n, 1 - n, -n}, {1 - k - n, 3/2 - k - n, 2 - k - n}, 1])/(k! (2 k - 1)! n! (2 n - 1)!); Join[{{1}}, Table[T[n, k], {k, 2, 8}, {n, 1, 2 k - 2}]] // Flatten (* Peter Luschny, Sep 04 2019 *)