A140211 a(n) = Product_{d == 3 (mod 4) and d|n} d.
1, 1, 3, 1, 1, 3, 7, 1, 3, 1, 11, 3, 1, 7, 45, 1, 1, 3, 19, 1, 21, 11, 23, 3, 1, 1, 81, 7, 1, 45, 31, 1, 33, 1, 245, 3, 1, 19, 117, 1, 1, 21, 43, 11, 45, 23, 47, 3, 7, 1, 153, 1, 1, 81, 605, 7, 57, 1, 59, 45, 1, 31, 1323, 1, 1, 33, 67, 1, 69, 245, 71, 3, 1, 1, 3375, 19, 77, 117, 79, 1, 81, 1
Offset: 1
Links
- J. Mulder, Table of n, a(n) for n = 1..20000
Programs
-
Maple
A140211 := proc(n) a := 1; for d in numtheory[divisors](n) do if modp(d,4) = 3 then a := a*d ; end if; end do: a; end proc: # R. J. Mathar, Dec 15 2015
-
Mathematica
ListProduct[lst_] := Fold[Times, 1, lst] lst = {}; For[n = 1, n <= 1000, n++, AppendTo[lst, ListProduct[Select[Divisors[n], Mod[ #, 4] == 3 &]]]] lst (* Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 15 2009 *)
-
PARI
a(n) = my(p=1); fordiv(n, d, if ((d % 4)==3, p*=d)); p; \\ Michel Marcus, Jan 07 2021
Formula
a(n) | A007955(n). - R. J. Mathar, May 26 2016