A140267 Nonnegative integers in balanced ternary representation (with 2 standing for -1 digit).
0, 1, 12, 10, 11, 122, 120, 121, 102, 100, 101, 112, 110, 111, 1222, 1220, 1221, 1202, 1200, 1201, 1212, 1210, 1211, 1022, 1020, 1021, 1002, 1000, 1001, 1012, 1010, 1011, 1122, 1120, 1121, 1102, 1100, 1101, 1112, 1110, 1111, 12222, 12220, 12221
Offset: 0
Examples
For example a(2) = 12, as 1*3 + -1*1 = 2. Similarly, a(19) = 1201, as 1*27 + -1*9 + 0*3 + 1*1 = 19.
Links
- Daniel Forgues, Table of n, a(n) for n = 0..100000
- Jeff Connelly, Ternary Computing Testbed 3-Trit Computer Architecture, 2008. - _Daniel Forgues_, Mar 23 2010
- Brian Hayes, Third Base, American Scientist, November-December 2001. - _Daniel Forgues_, Mar 23 2010
- Ternary.info Forum, Balanced ternary arithmetics. - _Daniel Forgues_, Mar 23 2010
Programs
-
Python
from sympy.ntheory.factor_ import digits def a004488(n): return int("".join([str((3 - i)%3) for i in digits(n, 3)[1:]]), 3) def a117968(n): if n==1: return 2 if n%3==0: return 3*a117968(n/3) elif n%3==1: return 3*a117968((n - 1)/3) + 2 else: return 3*a117968((n + 1)/3) + 1 def a117967(n): return 0 if n==0 else a004488(a117968(n)) def a(n): return int("".join(map(str, digits(a117967(n), 3)[1:]))) # Indranil Ghosh, Jun 06 2017
Extensions
Definition edited by Daniel Forgues, Mar 24 2010
Comments