A140280 Product of digits of values in Pascal's triangle, by rows.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 0, 0, 5, 1, 1, 6, 5, 0, 5, 6, 1, 1, 7, 2, 15, 15, 2, 7, 1, 1, 8, 16, 30, 0, 30, 16, 8, 1, 1, 9, 18, 32, 12, 12, 32, 18, 9, 1, 1, 0, 20, 0, 0, 20, 0, 0, 20, 0, 1, 1, 1, 25, 30, 0, 48, 48, 0, 30, 25, 1, 1
Offset: 0
Examples
1 1, 1 1, 2, 1 1, 3, 3, 1 1, 4, 6, 4, 1 1, 5, 1*0=0, 1*0=0, 5, 1 1, 6, 1*5=5, 2*0=0, 1*5=5, 6, 1 1, 7, 2*1=2, 3*5=15, 3*5=15, 2*1=2, 7, 1 1, 8, 2*8=16, 5*6=30, 7*0=0, 5*6=30, 2*8=16, 8, 1 1, 9, 3*6=18, 8*4=32, 1*2*6=12, 1*2*6=12, 8*4=32, 3*6=18, 9, 1 1, 1*0=0, 4*5=20, 1*2*0=0, 2*1*0=0, 2*5*2=20, 2*1*0=0, 1*2*0=0, 4*5=20, 1*0=0, 1 1, 1*1=1, 5*5=25, 1*6*5=30, 3*3*0=0, 4*6*2=48, 4*6*2=48, 3*3*0=0, 1*6*5=30, 5*5=25, 1*1=1, 1
Programs
-
Mathematica
Times@@@IntegerDigits@Flatten[Table[Binomial[n, k], {n, 0, 11}, {k, 0, n}]] (* James C. McMahon, Jul 06 2025 *)
Extensions
Offset changed to 0 by Georg Fischer, Dec 19 2020