A140292 a(n) is a square mod a(n-1), a(n) > a(n-1) and a(n) semiprime.
4, 9, 10, 14, 15, 21, 22, 25, 26, 35, 39, 49, 51, 55, 69, 82, 86, 87, 91, 95, 106, 115, 119, 121, 122, 123, 133, 134, 143, 146, 155, 159, 166, 169, 178, 183, 187, 202, 203, 219, 235, 249, 253, 254, 262, 265, 274, 278, 287, 289, 291, 295, 299, 302, 303, 309, 327
Offset: 1
Programs
-
Maple
isqResid := proc(n,modp) local x ; for x from 1 to floor(modp/2) do if x^2 mod modp = n mod modp then RETURN(true) ; fi ; od: RETURN(false) ; end: isA001358 := proc(n) RETURN( numtheory[bigomega](n)= 2) ; end: A140292 := proc(n) option remember ; local a; if n = 1 then 4; else for a from A140292(n-1)+1 do if isA001358(a) and isqResid(a,A140292(n-1)) then RETURN(a) ; fi ; od ; fi ; end: seq(A140292(n),n=1..80) ; # R. J. Mathar, May 31 2008
-
Mathematica
quadResQ[n_, p_] := Module[{x}, For[x = 1, x <= Floor[p/2], x++, If[Mod[x^2, p] == Mod[n, p], Return[True]]]; Return[False]]; semiprimeQ[n_] := PrimeOmega[n] == 2; a[n_] := a[n] = Module[{k}, If[n == 1, 4, For[k = a[n - 1] + 1, True, k++, If[semiprimeQ[k] && quadResQ[k, a[n - 1]], Return[k]]]]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 28 2024, after R. J. Mathar *)
Extensions
Corrected and extended by R. J. Mathar, May 31 2008