cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276171 Irregular triangle T(n,k) read by rows: The number of tilings of the n X n board by 1 X 1 and k 3 X 3 squares, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 9, 1, 16, 30, 12, 1, 1, 25, 132, 200, 79, 1, 36, 360, 1232, 1246, 1, 49, 780, 5048, 13211, 11984, 4526, 758, 51, 1, 1, 64, 1470, 15468, 78851, 193672, 234394, 139188, 37760, 3600, 1, 81, 2520, 38972, 324721, 1490562, 3761236, 5052890, 3305328, 807648
Offset: 0

Views

Author

R. J. Mathar, Aug 23 2016

Keywords

Comments

The number of monomers (1 X 1 squares) is n^2 - 9*k.
Row lengths are triplicated A002522.

Examples

			The triangle starts in row n=0 with columns k=0,1,...:
  1;
  1;
  1;
  1,  1;
  1,  4;
  1,  9;
  1, 16,  30,   12,     1;
  1, 25, 132,  200,    79;
  1, 36, 360, 1232,  1246;
  1, 49, 780, 5048, 13211, 11984, 4526, 758, 51, 1;
		

Crossrefs

Cf. A002522, A140304 (row sums), A193580 (1 X 1 and 2 X 2 squares).

Programs

  • Maple
    b:= proc(n, l) option remember; local k, m; m:=min(l[]);
          if n<3 then 1
        elif m>0 then b(n-m, map(x->x-m, l))
        else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
             expand(`if`(k+1 (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..12);  # Alois P. Heinz, Sep 27 2016
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{ k, m}, m = Min[l]; Which[n < 3, 1, m > 0, b[n - m, l - m],  True, k = 1; While[l[[k]] > 0, k++]; b[n, ReplacePart[ l, k -> 1]] + Expand[If[k + 1 < Length[l] && l[[k+1 ;; k+2]] == {0, 0}, b[n, ReplacePart[l, {k -> 3, k+1 -> 3, k+2 -> 3}]]*x, 0]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]} ] ][b[n, Table[0, n]]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

Formula

T(n,0) = 1.
T(n,1) = (n-2)^2, n >= 2.
From Alois P. Heinz, Sep 27 2016: (Start)
T(n,2) = (n-3)*(n-4)*(n-5)*(n+4)/2 for n > 2.
T(n,3) = (n^6 - 12*n^5 - 15*n^4 + 620*n^3 - 1234*n^2 - 7616*n + 22368)/6 for n > 5. (End)
Showing 1-1 of 1 results.