A140346 a(n) = binomial(n+8, 8)*5^n.
1, 45, 1125, 20625, 309375, 4021875, 46921875, 502734375, 5027343750, 47480468750, 427324218750, 3690527343750, 30754394531250, 248400878906250, 1951721191406250, 14963195800781250, 112223968505859375, 825176239013671875, 5959606170654296875, 42344570159912109375
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (45,-900,10500,-78750,393750,-1312500,2812500,-3515625,1953125).
Programs
-
Maple
seq(binomial(n+8,8)*5^n,n=0..18);
-
Mathematica
Table[Binomial[n + 8, 8] 5^n, {n, 0, 16}] (* or *) CoefficientList[Series[1/(1 - 5 x)^9, {x, 0, 16}], x] (* Michael De Vlieger, Mar 20 2017 *)
Formula
From Chai Wah Wu, Mar 20 2017: (Start)
a(n) = 45*a(n-1) - 900*a(n-2) + 10500*a(n-3) - 78750*a(n-4) + 393750*a(n-5) - 1312500*a(n-6) + 2812500*a(n-7) - 3515625*a(n-8) + 1953125*a(n-9) for n > 8.
G.f.: 1/(1 - 5*x)^9. (End)
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 11197440*log(6/5) - 14290736/7.
Sum_{n>=0} (-1)^n/a(n) = 3071048/21 - 655360*log(5/4). (End)
Comments