A140361 Number of additions, subtractions, or multiplications necessary to reach n starting from 1 and 2.
0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 3, 2, 3, 3, 4, 3, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 5, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 4, 5, 4, 4, 3, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 5, 5, 4
Offset: 0
Keywords
Examples
a(7) = 3 because we have 7 = (1+2)+(2*2), or 7 = 2*(2+2)-1 and there is no shorter way; the sequences are (1,2,3,4,7) or (1,2,4,8,7), respectively.
Links
- P. Koiran, Valiant's model and the cost of computing integers, Comput. Complex. 13 (2004), pp. 131-146.
- Index to sequences related to the complexity of n
Crossrefs
Cf. A173419.
Programs
-
Maple
g:= f->seq(f union {t}, t={seq(seq({i+j, i-j, i*j}[], j=f), i=f)} minus f): F:= proc(n) F(n):= map(g, F(n-1)) end: F(0):= {{1, 2}}: S:= proc(n) S(n):= map(x->x[], F(n)) minus S(n-1) end: S(0):= {0, 1, 2}: a:= proc(n) local k; for k from 0 while not(n in S(k)) do od; k end: seq(a(n), n=0..100); # Alois P. Heinz, Sep 24 2012
Formula
a(n) = A173419(n) - 1 for n > 1. Hence log_2(log_2(n)) <= a(n) <= 2*log_2(n) - 1. - Charles R Greathouse IV, Sep 20 2012
Extensions
Corrected, from 6 to 5, a(59) = ((2+2)*2)*8-1-4 and a(94) = (((2+2)+2)+4)*10-6, by Leonid Broukhis, Aug 04 2008
a(24) and a(96) corrected by Charles R Greathouse IV, Sep 20 2012
Comments