cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A216639 A027642(6*n+6)/(sequence of period 2:repeat 42,210).

Original entry on oeis.org

1, 13, 19, 13, 341, 9139, 43, 221, 19, 270413, 1541, 667147, 79, 16211, 6479, 21437, 103, 996151, 1, 11086933, 103759, 20033, 6533, 11341499, 51491, 8545667, 3097, 16211, 59, 34408161359, 1, 4137341, 5826521, 1339, 219666403, 72719023, 223, 2977, 1501, 45423164501, 83
Offset: 0

Views

Author

Paul Curtz, Sep 12 2012

Keywords

Comments

Is a(n) always an integer? Is there an a(n) ending with 5?
It appears (tested for n <= 800) that a(n) mod 9 is always one of {1, 2, 4, 5, 7, 8}.
There is a similar sequence of ratios A027642(10n+1)/(66*A010686(n)) which starts 1, 1, 217, 41, 1, 172081, 71, 697, 4123, 101, 23, 7055321, 131, 2059, 32767, 697, 1, 21896102683,...
a(n) is always an integer: 42 = 2*3*7 and 1, 2, and 6 divide 12n+6; 210 = 2*3*5*7 and 1, 2, 4, and 6 divide 12n+12. a(n) never ends in 5 (or 0) since 12n+6 is not divisible by 4 hence the (12n+6)-th Bernoulli denominator is not divisible by 5, and Bernoulli denominators are squarefree and hence the (12n+12)-th Bernoulli denominator, divided by 210, cannot be divisible by 5. - Charles R Greathouse IV, Sep 12 2012
The previous comments argue that 3 or 5 are never prime divisors of a(n). In addition (tested up to n <=900), 7 apparently is also a non-divisor of a(n). In summary, the prime divisors appear all to be in A140461. - Jean-François Alcover, Sep 17 2012

Crossrefs

Programs

Formula

a(n) = A027642(6*n+6)/(42*A010686(n)).

Extensions

a(20)-a(40) from Charles R Greathouse IV, Sep 12 2012
Showing 1-1 of 1 results.